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The elastic scattering of two scalar particles having equal masses is considered in the formalism
of relativistic quantum theory over a Galois field GF(q). The scattering function ¢ determining the
cross section is introduced. It is determined by the geometrical relations of Euclidicity, to be imposed
on observable 4-momenta in a finite geometry. Thus the requirement of Euclidicity of observable
4-momenta can be considered as the counterpart, in a finite geometry, of the requirement of the
analyticity of the invariant amplitude used in conventional S-matrix theory for the determination

of the cross section.

I. MAXIMAL ORDER IN A GALOIS FIELD

ET ¢ be a prime, and a be an integer. Let us

denote
a, = {n;n = integer, n = a(mod ¢)},
GF(Q) = {OM 1«; 2«: Tty (q - l)a}°

By the definitions
a, + b, = (a + b), and ab, = (ab),,

GF(q) becomes a field of numbers known as a
“Galois field”.!

Let us from now on restrict ourselves to such
Galois fields for which the fundamental prime ¢ is
of the particular form

g=8nqg - @& — 1, )

where n is a positive integer, and the ¢, g2, -+, @
are the k first primes. Let us denote
E[a] = {(1,,, (a + l)a: ttt (a + Qr+1 — l)q}

C GF(g).
By the definition

a, > b, ifandonly if a, — b, = p*,

1 See, e.g., L. Dickson, Linear Groups (Dover Publications,
Inc., New York, 1958).

where p is a primitive number' of GF(g) and & is
an integer depending on a, — b, every set Ela]
of GF(q) becomes transitively ordered.® In other
words, for every two elements (a 4+ j), € Ela] and
(a + 1), € Ela] one has

@+ > (a+ D

If, in particular,

(q1=+l)a = PZHI; 2)

where % is an integer, then the sequences Ela] are
the longest sequences of successive integers of the
Galois field that can be transitively ordered. Let
us call such E[a] the “Euclidean chains’* of GF(q).
Their “length’” can be defined to be equal to Ela] =
gre1. A Galois field GF(g) obeying the conditions
(1) and (2) will be called a “maximally ordered
Galois field,” there being a “maximal order of the
length g;+,” in this field.

The importance of maximally ordered Galois fields
is due to the fact that the Euclidean chains of such

if and only if 7> I.

a field can be isomorphically mapped to ¢:., points

z P, Kustaanheimo, Soc. Sci. Fenn. 15, No. 19 (1950). See
also Part I of this series of papers.?

3 Part 1: Y. Ahmavaara, J. Math. Phys. 6, 87 (1965). Part
II: Y. Ahmavaara, J. Math. Phys. 6, 220 (1965).

+ In accordance with F. Levi, Zentr. Math. 39, 156 (1951);
a review of Kustaanheimo, Ref. 2.
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of the real axis. Let R be the field of the real numbers,
and let us denote

Rla] = {ae, (@ + V¢, -+, (@ + g1 — 1)} C R,

where a is an integer, and e is a positive real number.
Then the function ¢ from E[a] to R[a] defined by

@(by) = be

is an isomorphism. This isomorphism holds both
for the addition, for the multiplication, and for the
order of the respective elements of E[a] and R[a]:

o(a, + b) = ¢((a + b)) = (a + de,
e(asd) = ¢((ab))) = abe,
a, > b, & pla) = ae > o(b,) = be s a > b.

II. THE MOMENTUM SPACE OVER A
MAXIMALLY ORDERED GALOIS FIELD

Let EG{4, ¢) be a four-dimensional linear space
over a maximally ordered Galois field GF(q). Every
element p of EG(4, ¢) is a vector having four com-
ponents, each of the components being a Galois
number. Let us denote these components as follows:

p= (pO) D1 D2, Pa) E EG(4; Q):
Pa € GF(Q)V a=0,1,23.
Consider p € EG(4, q), such that
pi +p: +p; 20,
Po — pi — ps — p3 2 O,
For such p there exist the Galois numbers « and g
such that

6))

P1+Pz+p3='<; (4)

Po—pi—Ps—Ps = u.
Let us define a subset F of EG(4, ¢) by p € E
if and only if the relations (4) and the formulas

P € BE[—3(q+1 — 1], p: € E[—¥(geen — D),
ps € E[—3(qsx — 1)], po € E[0], (5)
« € E[0], » € E[0]
hold good. Denoting
D=0, P2=by, Ps=¢6, po=d,
k = ke, b= My,
the relations (4) and (5) read
@+ + =k, & —F§ =m 4
a,byc=0, %1, £2, -+, £g. — 1), )

d,k,m=0,1,2 ---

respectively.

y Qe+1 — 1;
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Let =(m) be the number of the solutions (a, b, c,
d, k, m) of the Diophantine equations (4’) by the
values (5’) for a fixed value of m. Let =(m, d) be
the number of such solutions for fixed values of m
and d.

Performing the mapping ¢ from E[—3(gy+, — 1)]
to R[—3(gisy — 1)] and from E[0] to R[0] the
elements p € E of EG(4, ¢) are mapped to the
elements r of the real four-dimensional linear space
R*, such that

N = Qe ry = be, ro = de,

2 2 2 2 2 2 2 2 2
rntratrs=Fke rg—r—1;—15=me

The elements r form a finite lattice L of points
in RB*. The mapping & from E to the lattice L so
induced is an isomorphism both with respect to all
the rational operations on the coordinates of the
points, and with respect to the order of the points
on straight lines. In view of this isomorphism F
may be called a particular “Euclidean lattice” of
points of the finite space EG4, ).

Physical Interpretation

The vectors p € EG(4, q) obeying the relativistic
energy-momentum relations (4) represent the 4-
momenta in a finite geometry. In particular, the
Euclidean lattice £ C EG(4, q) is the “physical
domain” of momentum, that is, the vectors p € E
represent the observable 4-momenta. If a physical
system is in a quantum theoretical state charac-
terized by a momentum p & F, the measurement
of 4-momentum yields the result ®(p) = r (in a
suitably chosen unit e of energy). The function
Z(m) thus gives the number of the observable
states of momentum for a fixed value of mass, and
the function Z(m, d) gives the number of the ob-
servable states of momentum for fixed values of
mass and energy. Accordingly, Z(m) can be con-
sidered as the mass spectrum, and Z(m, d) as the
energy spectrum of a particle with mass m, in a
finite geometry. All these interpretations were in-
troduced in Part I of this series of papers.®

III. THE SCATTERING FUNCTION

Consider four elements p, n, p/, and n’ of £ C
EG4, ¢), such that

Po— Pl —DP:—Ps=me—ni—m;—mn; = m,

P8’ — pi* —pi’ — pi® = nl® —nl® —nf’ —nf’ = mi,
i+ +pi=nl+n+ng =k,

P’ + 95" + pi’ = nf® +nf’ + 0’ =k, (6)
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Pt =p,+n=p+n; =0,
pil+n=p;+nj=pi+nf=0,
Do + 1o = p; +ng = E, € E[0],

@ =)’ + (0. — P’ + (ps — P3)° = Aq,

A, € E[0].

Denoting

b = a, P2 = b, P2 = Cq, Po = dg,

pi=a, p=0b, pi=c;, pi=4d, @
Ca: Ny = Da)

’ - = = =
m=A4d; ng=B;, ni=0C, nl=D

n, = Aq, Ny = Bq, Ny =

the conditions (6) can be written in the form of

the Diophantine equations
a2+b2+02=A2+B2+CZ=k2’
a/2 + b,? + c,2 — A,? +B/2 + 012 = kz’
d2=D2=dl2=DI2=m3+k2’
a+A=b+B=c+C =0, 8)
o+ A" =b+B =¢+C =0,
4(k* + m”) = E°,
(@~aV+@®—-0)+@c—c) =24,
for the integers
a,b,c, A,B,C,a’,b,¢'", A", B’, C’
= 0: :E]') ) i‘-(Qk+1 -
d,D,d',D',k,mE A=0,1,2, .-

D2,
’ (qk+1 - 1)

Let o(m, E, A) be the number of the solutions
(6,b,¢,d,4,B,C, D, a, ¥, ¢, d', A", B/, (", D', k,
m, I, A) of the Diophantine equations (8) by the
values (9) for fixed m, E, and A.

Physical Interpretation

Consider an elastic scattering process p + n —
p’ + n’, where p, n, p’, and n’ are the Galois-
number 4-vectors representing (by the isomorphism
®) the 4-momenta of the particles in question. Let
all these particles be scalar particles with identical
masses represented by the Galois number m,. The
conservation of momentum requires that

p+n=p +n, (10)

and the three quadratic invariants of the process
are represented by
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8 = (Po+n0)’ — (pr+1,)° — (P2 +n,)" — (ps +ns)?,

t = (po—p5)" — (pr — p)* — (02 — 5" — (B — p})",

u = (po—nf)’ — (p, —nl)’ — (P — )’ — (s —nf)’.
(11)

These are connected with one another by the relation
s+ t4+u=4m.

In the center-of-mass system of the incoming
particles p and n, one has

Pr+7m =p+n =p;+n =0, Do = 7o,

and, in view of the conservation of momentum (10),
the further relations

pi+ni =p;+n=p;i+nf=0,

Pi = 1y = Po = Ne.

The variables k,, E,, and A, defined by (6) thus
represent the center-of-mass (c.m.) 3-momentum,
the c.m. total energy, and the c.m. transfer of
momentum of the process, respectively. If @ is the
scattering angle between the particles p and p’ in
the c.m. system, one has

s = B3 = 42 4 4m?,
—A2 = —2k¥1 — cos 6),
u = —2k3(1 + cos 6).

The value of the function ¢ for fixed m, E, and A
evidently gives the number of open channels of
observable momentum for the process p+n — p’+n’
for fixed values of the mass, the scattering energy,
and the transfer of momentum. This function can
be considered as the theoretical prediction for the
cross section {apart from a factor of proportionality,
ef. (13’)] in a finite geometry.

IV. AN OUTLINE OF THE MODEL
COMPUTATIONS

{ =

The spectral function Z(m) and the scattering
function o(m, E, A) together determine completely
the existing scalar particles (the masses) and their
elastic scattering processes in the present formalism
of relativistic quantum theory over a Galois field.

For every prime ¢, there is a particular spectral
function Z(m) and a particular scattering function
a(m, E, A). After the choice of a particular value
of g, one first has to compute the function Z(m).
Hereafter one can compute the scattering function
o(m, EA) for the particular values of m for which
there is a peak in the function Z(m). These m-values
represent the common (scalar) particles of the finite
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world in question. It would be interesting to see
how the functions =(m) and ¢(m, E, A) change
when ¢;,, is changed and, in particular, how these
functions behave for large ¢.., (this should cor-
respond to a realistic physical situation).

After the generalization of the scattering function
¢ to the case of nonelastic scattering of scalar
particles having different masses (this can be done
in principle in a similar way that was used here
for elastic scattering of equal-mass particles), one
can also compute these processes of scattering in
the chosen model.

In order to consider the interactions of nonscalar
particles in the finite model recourse must be taken
to the general group formalism of interactions de-
scribed in Part IT of this series of papers.® One can,
for instance, consider the inhomogeneous Lorentz
group (the Poincaré group) over a field GF(q) with
a maximal order of the length ¢;,, [it follows from
a theorem of Dirichlet that for any chosen value
of g.., there is an infinite sequence of the primes ¢
satisfying the formula (1)]. If this group is chosen
to be the relativity group of space-time, one has
to construct the irreducible unitary representations
U of this group in terms of ordinary complex-num-
ber matrices. Each of these representations is char-
acterized by two indices M and S (see Part I?): Ujys.
To be specific, pick out three particular mass peaks
my, me, and ms of the model function =(m), and
consider the irreducible unitary representations cor-
responding to the values M, = —(m,):, M, =
—(ms);, and M; = —(ms)?. Choose also some
values S;, S;, and S; of the index 8. Find the
reduction

Us,s, @ Ulrs, ~ Ulrys. @ -+~

The reduction coefficients g (ef. Part II°) can now
be substituted to the S-matrix elements of any
desired graph describing the mutual interactions of
the particles (M,S,), (M,8S.), and (M,S,). If

(IS[) = (P81, Doy -+ |S| pls{, piss, - D (12)

is an S-matrix element calculated with the help of
the g-coefficients, one must at the next stage com-
pute the sum

)

channels

KISDI®

over all the channels of the process discussed. The
number of these channels of course depends on what
variables are observed in the process. The sums of
the form (13) for fixed values of the observed
variables then give the final theoretical prediction
of interaction in question.

13)
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V. COMPARISONS OF DIFFERENT
FORMALISMS

The Scattering Function and the Group Formalism
of Interactions

For the scattering p + n — p’ + n’ of scalar
particles the S-matrix elements (12) reduce to a form

(ISD = (p,n |SI y 2 n’).

On the other hand, the only information contained
in the reduction coefficients g in the case of scalar
particles is the conservation of momentum: p 4+ n =
p’ + 7'. Accordingly, the S-matrix element de-
scribing the scattering of scalar particles reduces
further to the form

(p,n |8|p',n")

= <p: n lp’) nl> + A<p +n Ip’ + n,>: (12,)
which can also be written as
o,n| 8 —1[p,n)=Alp+n]|p +n). (127)

Here A is a (complex) constant, and (p + n|p’ + n’)
is equal to the Kronecker function §,.,,,:+n-. Thus
the sum (13) over the channels of the process be-
comes simply the sum over the channels of observ-
able momentum for which the total momentum is
conserved. Leaving aside the trivial case in which
p = p and n = 7/, one has then for particles
having identical masses the result

2 o, |Slp, ) = |A] X

channels

X 2 p+n|p +u)=|A] o(m E, B).

channelsa

(13")

Thus the description of the scattering of scalar
particles by the scattering function is in accordance
with the general group formalism of interaction de-
veloped in Part IT of this series of papers.’

‘The Finite Formalism and the Conventional
S-Matrix Theory

If the momentum space EG(4, q) over the Galois
field GF(q) is replaced by the momentum space R*
over the real numbers, the spectral function =(m),
as well as the scattering function o(m, E, A) become
trivial density functions. Accordingly, there is no
(nontrivial) geometrical mass spectrum in the mo-
mentum space over the real numbers, and no (non-
trivial) geometrical scattering function. Thus the
finite formalism of relativistic quantum theory de-
veloped in this series of papers does not give non-
trivial results in the ordinary geometry. The non-
trivial results of the finite formalism are due to
the application of a finite geometry.
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In the conventional S-matrix theory, associated
with a momentum space over the real numbers,
one assumes that the invariant amplitude A of the
formulas (12’), (12”), and (13’) is not a constant
but a function of the mutually independent variables
s and t: A = A(s, t). The requirement of the an-
alyticity of the function A(s, {) when extended to
complex variables s and ¢, is then used for the
determination of the cross sections.

In the finite formalism of relativistic quantum
theory, where the general group formalism of Part IT
is applied, the amplitude A is a constant. Thus
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the amplitude is now trivial, while the density func-
tions Z(m) and o(m, E, A) are not. The scattering
of scalar particles is now determined by the non-
trivial scattering function o(m, E, A). Thus the
requirement of the Euclidicity of the observable
4-momenta, on the basis of which the function
o(m, e, A) was constructed, can be considered as
the counterpart, in a finite geometry, of the require-
ment of the analyticity of the invariant amplitude,
used for the construction of cross sections in the
ordinary S-matrix theory applying the ordinary
geometry.
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The decay functions determining the lifetimes and the stability of particles in finite models of

relativistic quantum theory are considered.

L THE DECAY FUNCTION: DECAY INTO TWO
PARTICLES

HIS is the last one in a series of papers con-

sidering the formalism of relativistic quantum
theory over a finite geometry. One of the pos-
sibilities of finite geometry is the purely group
theoretical (“unitary symmetry’’) character of the
formalism, as was emphasized in Parts I and II
before.! Another consequence of finite geometry is
the existence of the conditions of Euclidicity to be
imposed on the observable 4-momenta. These con-
ditions determine three important functions of
momentum, viz.

(1) the spectral function Z determining the mass
spectrum in finite geometry, and introduced in
Part I,

(2) the scattering function o determining the
momentum dependence of the scattering of particles,
and introduced for the elastic scattering of scalar
particles in Part IIL,* and

(3) the decay function & determining the lifetimes
and the stability of particles in a finite geometry.
Mavaam, J. Math. Phys. 6, 87 (1965) (Part I);
'ilnds 223 (1965) (Part II).

Y. Ahmavaara, J. Math. Phys. 7, 197 (1966) (previous
paper).

This last function will be considered in the present
paper.

The Euclidean lattice of the momentum space
(cf. Ref. 2) could be chosen in several ways. Applying
the same choice that has been made in the previous
papers of this series, and using again the center-
of-mass system of the process under consideration,
one obtains the following decay function for a
decay into two particles, in the simplest possible
case.

Consider the decay of a scalar particle with rest
mass M into two scalar particles having the rest
masses m, and m,, respectively. Let the 4-momenta
of these particles be denoted as P, p,, and p.,
respectively, so that the decay process in question
can be denoted as P — p, + p..

In order that the masses and the 4-momenta are
observable the masses, the energies, and the absolute
values of the 3-momenta in question must belong to
the Euclidean chain E[0] of the underlying Galois
field (for a closer study see Ref. 2), and the com-
ponents of the 3-momenta must belong to the
chain E[—1(gz+1s — 1)]. Here gy., is the prime
giving the length of the maximal order in the under-
lying Galois field (see Ref. 2).



RELATIVISTIC QUANTUM THEORY.

In the conventional S-matrix theory, associated
with a momentum space over the real numbers,
one assumes that the invariant amplitude A of the
formulas (12’), (12”), and (13’) is not a constant
but a function of the mutually independent variables
s and t: A = A(s, t). The requirement of the an-
alyticity of the function A(s, {) when extended to
complex variables s and ¢, is then used for the
determination of the cross sections.

In the finite formalism of relativistic quantum
theory, where the general group formalism of Part IT
is applied, the amplitude A is a constant. Thus

111 201
the amplitude is now trivial, while the density func-
tions Z(m) and o(m, E, A) are not. The scattering
of scalar particles is now determined by the non-
trivial scattering function o(m, E, A). Thus the
requirement of the Euclidicity of the observable
4-momenta, on the basis of which the function
o(m, e, A) was constructed, can be considered as
the counterpart, in a finite geometry, of the require-
ment of the analyticity of the invariant amplitude,
used for the construction of cross sections in the
ordinary S-matrix theory applying the ordinary
geometry.

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7,

NUMBER 2 FEBRUARY 1966

Structure of Space and the Formalism of Relativistic Quantum Theory. IV

Yri6 AEMAVAARA

Institute of Mathematical Physics, University of Turku, Turku, Finland
(Received 20 July 1965)

The decay functions determining the lifetimes and the stability of particles in finite models of

relativistic quantum theory are considered.

L THE DECAY FUNCTION: DECAY INTO TWO
PARTICLES

HIS is the last one in a series of papers con-

sidering the formalism of relativistic quantum
theory over a finite geometry. One of the pos-
sibilities of finite geometry is the purely group
theoretical (“unitary symmetry’’) character of the
formalism, as was emphasized in Parts I and II
before.! Another consequence of finite geometry is
the existence of the conditions of Euclidicity to be
imposed on the observable 4-momenta. These con-
ditions determine three important functions of
momentum, viz.

(1) the spectral function Z determining the mass
spectrum in finite geometry, and introduced in
Part I,

(2) the scattering function o determining the
momentum dependence of the scattering of particles,
and introduced for the elastic scattering of scalar
particles in Part IIL,* and

(3) the decay function & determining the lifetimes
and the stability of particles in a finite geometry.
Mavaam, J. Math. Phys. 6, 87 (1965) (Part I);
'ilnds 223 (1965) (Part II).

Y. Ahmavaara, J. Math. Phys. 7, 197 (1966) (previous
paper).

This last function will be considered in the present
paper.

The Euclidean lattice of the momentum space
(cf. Ref. 2) could be chosen in several ways. Applying
the same choice that has been made in the previous
papers of this series, and using again the center-
of-mass system of the process under consideration,
one obtains the following decay function for a
decay into two particles, in the simplest possible
case.

Consider the decay of a scalar particle with rest
mass M into two scalar particles having the rest
masses m, and m,, respectively. Let the 4-momenta
of these particles be denoted as P, p,, and p.,
respectively, so that the decay process in question
can be denoted as P — p, + p..

In order that the masses and the 4-momenta are
observable the masses, the energies, and the absolute
values of the 3-momenta in question must belong to
the Euclidean chain E[0] of the underlying Galois
field (for a closer study see Ref. 2), and the com-
ponents of the 3-momenta must belong to the
chain E[—1(gz+1s — 1)]. Here gy., is the prime
giving the length of the maximal order in the under-
lying Galois field (see Ref. 2).



202

To simplify the notation one can assume that
the momentum variables in question are equal to
the integers associated with the Euclidean chains
in question. Accordingly, the masses M, m,, and m,,
the energies P, 2., and ps, and the absolute
values of the 3-momenta, K, k,, and k,, are elements

of the sequence
0,1,2, -+, qour — 1, oy

and the components of the 3-momenta, P;, pij,
and p.;, for j = 1, 2, 3, are elements of the sequence

- %(qlﬂl - 1): A _2) _1;0: 1;2: ]
Haeon — 1. (2)

The conservation of momentum thus reads:

0=pli+p2i7 j=1;2:3:
(P:l + pfa + Pfa)* = (pzz + pgs + pﬁz)" =k, (3)
M = P10 + Pro-

The relativistic mass relations give the further
equations

mi =pi — k', mi=pyp— K. 4)

The problem to be considered is the following:
Given three integers M, m,, and m, from the
sequence (1), such that, say, m, > m,, find the
number 8(M, m,, m;) of the solutions of (3) and
(4) by the allowed integer values (1) or (2) of the
respective variables. This number § then gives the
number of the open channels of momentum for
the process P — p; + p..

One can readily solve the equations for k, po,
and Pqo:

Do = (M? + m] — m3)/2M,
P20 = M — Do, (5)
k= (pgo - mf)i

In order that p,, belong to the sequence (1)
it is thus necessary that

(M* + mi — m3)/2M = integer (6)

from the sequence (1). Accordingly, the integer
M? + mi — m2 must be divisible by 2.

In order that p,, belongs to the sequence (1)
one obviously must have

M —po=M/2— (m —m)/2M >0. (7)
This is equivalent to

M > md — mi.

@)
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In order that k belongs to the sequence (1) it
is necessary that p,, = m, or, what is the same,

M/2 + (m] — m3)/2M > m,. ®)

In view of the assumed relation m; > m, this
condition is equivalent to

M2m1+m2.

Evidently, (7') is a consequence of (8').
Furthermore one must have the condition that

9)

®)

pi, — m? = square of an integer

from the sequence (1).

The decay function 8(M, m,, m;) can now be
constructed in the following way: Given the numbers
M, m,, and m,, such that m, > m.,

(1) Check whether M > m; + m, If not,
6(M, ml, mz) = O.

(2) Check whether (M* + m? — mj)/2M is an
integer from the sequence (1). If not, §(M, m,, m;) =
0. If so, put

(M? 4+ mi — m3)/2M = ». (10)

(3) Check whether (* — m?)! is an integer from
the sequence (1). If not, 6(M, m,, m;) = 0. If so, put

¢* — m) = k. 11)
(4) Find the number of the solutions (k,, k., ks) of
B =k + ks + ks (12)

by the values k,, k., and k; taken from the sequence
(2). This number gives the value of (M, m,, m,)
in the case that §(M, m,, m,) # 0.

Connection to the S-Matrix Formalism

Evidently, the decay function should have a
similar kind of connection to the S-matrix formalism
as the scattering function ¢ was shown to have.’
If one considers all the channels through which
a scalar particle having the mass M can decay
into two scalar particles having the masses m,
and m,; and sums over the probabilities of the
decays through the different channels, one should
obtain
ehaéls KMI ‘S Imh 'm2>l2 = lBlz 5(M, my, m2)- (13)
Here B is a complex constant [cf. Ref. 2, Eq. (22')].
Thus the decay function §(M, m,, m.) should
represent, apart from a constant factor, the sum
of all the Feynman graphs beginning with an
incoming scalar particle M, and ending with two
outgoing scalar particles m, and m,.
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II. THE DECAY FUNCTION: DECAY INTO
THREE PARTICLES

Consider now a decay P — p, + p2 + ps of a
scalar particle having the mass M into three scalar
particles having the masses m;, m,, and m;. In the
center-of-mass system the conservation of mo-
mentum reads

0=p1i+p21'+p31‘7 j=1:2)3)

(14)
M= Pro + P20 T+ Doy
and the relativistic mass relations give
mi =Pl — &, ¢ =ph+ i + pls,
M =D — ¢, Gz = Por + Pi + pa,  (15)

q§ = p§1 + pgz + pga.

Here q,, g., and ¢; are the absolute values of the
three 3-momenta in question.

The decay function 6(M, m,, m,, ms;) can now
be constructed, evidently, in the following way:

(1) Find the solutions

2 2 2
M3 = Pzo — ¢s,

(my, @1, D10y P11y Przs D1s)s
(ma, @2, Doy D21, P2y P2s),

(ms, @3y Dsos Pa1, Pazs Pas)

of the equations (15) by the integers of the respective
sequences (1) or (2), the integers m,, m,, ms, ¢1, ¢z, ¢s,
P10, P20, 0d Py being to be taken from the sequence
(1), and the remaining integers from the sequence

@).

(2) Compute, for every combination (p;o, P20, Pso),
the value

(16)

M = py + P20 + Dz 17

(3) Find, for every value of M, the number of
the solutions (16) which obey the further condition
that

Pis F+ D2; + p3; = 0, (18)

This number gives the value of §(M, m,, m., ms).

Of course, the function §(M, m,, m., ms) should
represent, apart from a constant factor, the sum
of the Feynman graphs having an incoming scalar
particle M, and three outgoing scalar particles
My, My, and ms.

ji=1,2,3.

I, THE STABILITY OF PARTICLES IN A
FINITE MODEL

Models of Scalar Particles

Choose the prime g.,; and thus the length
of the Euclidean chains. Compute the spectral
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function =(m). Choose the peaks of this function.
Compute the decay functions §(M, m,, m,) and
(M, m,, my, ms) for the peaks M of the spectral
function. The maximum é§-value for a fixed M
then gives a number inversely proportional to the
lifetime of the particle having the mass M. If
this maximum is zero, the particle in question is
stable.

Models of Nonscalar Particles

In a realistic finite model of relativistic quantum
theory the particles are associated with the irre-
ducible representations of the Dieudonné group
(see Part I) over a Galois field GF(q), such that
g = 8nq.q, +++ ¢ — 1. Here n is an integer, and
the ¢qi, gz, *+- , g are the k first primes preceding
the prime g¢.,; which gives the length of the
Euclidean chains. These irreducible representations
and, accordingly, the particles of a finite world
model, seem to be characterized by three labels
representing mass M, spin S, and charge @ (cf.
Part I). The labels S and @ may be functions of
mass but these functions are not known. Also
the representations themselves are unknown. In
the present situation one could think of the following
kind of models of nonscalar particles.

Choose the prime ¢;.,. Compute again the spectral
function =(m). Choose the peaks M of this funection,
and compute the decay functions §(M, m,, m,)
and 8(M, m,, ms, ms) for these peaks M. Let the
values of spin S and charge @ be distributed in
some way over the mass peaks M. Impose the
requirement of the conservation of spin and charge
on the decays of particles. Let the particles with
zero mass M = 0 have the charge zero. Then the
smallest mass peak M, > 0 can always be made
stable by associating with it the elementary charge.
The smallest mass peak M, then represents the
electron of the model.

The nucleon must be represented in the model
by the smallest mass peak M, > M, for which
the decay functions are zero. Then the stability
of the nucleon is not due to the conservation of
spin and charge but to the decay functions char-
acteristic of finite geometry. This way the con-
servation of the ‘“barionic number”’ could be given
a geometric interpretation in terms of the finite
geometry of the momentum space.

The unstable particles of the model are associated
with the mass peaks M with max & > 0 which can
decay violating not the conservation of spin and
charge. The only quantum numbers characterizing
the particles should be the geometric quantum
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numbers M, S, and @ (maybe a combination in-
cluding parity). The isotopic spin quantum numbers
and all the other approximative quantum numbers
should be given a geometric interpretation in terms
of the approximative properties of the decay and
scattering functions characteristic of the finite
geometry of the momentum space.

IV. NOTE OF DISCUSSION

All the three types of functions, the spectral
function Z, the decay function §, and the scattering
function o, give the number of the solutions of
some set of Diophantine equations. The integer
values allowed for the variables in these equations
are associated with the Euclidean chains of the
underlying Galois field GF(g). Of course the number
of the solutions—and thus the functions =, §, and

YRJO AHMAVAARA

o—depends on the choice of these Euclidean chains.
In the present series of articles one has chosen the
masses, the energies, and the absolute values of
the 3-momenta to be taken from the Euclidean
chain E[0], and the components of 3-momenta to
be taken from the Euclidean chain E[—3(gi+1 — 1)].
Other choices could possibly have been made, giving
other functions Z, 5, and o.

There is another possibility of choice which also
may affect the values of the 8- and the o-functions,
viz., the choice of the system of reference in which
the particle process in question is considered. In
the present series of articles one has always chosen
the center-of-mass system. When computing these
functions in finite models of relativistic quantum
theory one should experiment also by making other
choices of the system of reference,
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The Gel’fand-Moshinsky bases for the unitary irreducible representations of the SU; group are
applied to the unitary scheme for the classification of elementary particles and resonances. A unified
method is given for the derivation of the matrix elements of the octet tensor operators in & way
which makes transparent its application for other irreducible tensors. The results are given in & re-
markably simple form. The systematic use of the basis provides a methodological alternative to the

current tensorial methods.

1. INTRODUCTION

'HE present work is concerned with the applica-
tions of the bases for the unitary irreducible
representation (IR) of the SU; group to the current
scheme' for the classification of elementary particles
and resonances and its symmetry breaking.® The
bases here considered for the U; group correspond
to those derived by Moshinsky® in his recent treat-
ment of the nuclear many-body problem.* In Sec. 2
we give a brief account of Moshinsky’s theory from
which easily follows the corresponding basis for SUs,.
The use of the bases presents a number of method-
ological advantages, the first of which is that they
correspond to irreducible representations. On the
other hand, Moshinsky’s realization of the generators
of the group in terms of creation and destruction
Fermion operators gives,® when applied to a given
IR, the structure of the corresponding configuration
in terms of the quarks or aces.®
From the practical viewpoint the use of the bases
provides a direct and clear-cut method for the com-
putation of matrix elements (ME) of irreducible
unitary tensors between states of any irreducible
representations. In Sec. 3, after defining the irre-
ducible unitary tensor operators of a given rank

1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne’eman,
Nuecl. Phys. 26, 222 (1961).

* 8. Okubo, Progr. Theor. Phys. (Kyoto) 27, 948(1962),

3 M. Moshinsky, Physics of Many Particle Systems, edited
l})?' E. Meeron (Gordon and Breach Science Publishers, Inc.,

ew York, 1964),

4+ This basis was fully discussed by G. E. Baird and L. C.
Biedenharn in a series of papers: Phys. Letters 3, 69 (1962);
J. Math, Phys. 4, 436 and 1449 (1963); J. Math. Phys. 5,
1723 and 1730 (1964). These authors refer to it as the Gel'fand
basis, after the name of whom first considered it: I. M.
Gel'fand and M. L. Zetlin, Dokl. Akad. Nauk SSSR 71, 825
{1958). However in the following we shall stick to Moshinsky’s
work, since he first gave an explicit construction of the basis.

5 For a realization of the generators in terms of boson
operators see M. Moshinsky, J. Math. Phys. 4, 1128 (1963)
and Rev, Mod. Phys, 34, 813 (1962).

8 G. Zweig, CERN report (unpublished).

we give in some detail the method of calculation
of the tensor operators associated with the octet
representation of SU,;, between states of any IR’s,
thus unifying the previous works of Okubo® and
Lurié and MacFarlane.” It is convenient to introduce
the regular tensor operator® in order to simplify
the algebraic calculations. The ME are obtained in
terms of “reduced matrix elements” which depend
only on the IR’s considered and on the tensor itself.
In spite of the fact that these ‘“reduced matrix
elements” are not the reduced matrix elements in
the Wigner-Eckart sense’ they appear in a natural
way in our algebraic treatment. In the case of the
ME between states of the same IR the “reduced
matrix elements” are linear combinations of the
Wigner-Eckart ones and for states of different IR’s
they are simply proportional to them.

The use of Gel'fand’s labels for the states, instead
of current labeling” in terms of \, u, I, », and ¥
makes the expressions for the ME much simpler.
Relations for going from Gel’ fand’s labels to AulyY
are given in the text.

As it is explained in Sec. 3, the ME of the regular
tensor operator between states of different IR’s are
given in terms of the ME of the singlet component
of this tensor, which are given in Table I. It is
remarkable that all these ME factorize a function
¢ that depends only on the states envolved and not
on the particular tensor components,

The ME between states of the same IR are given
in Table I1.

The present systematic use of the basis, its direct
significance and application provides a method-

7 D. Lurié and A. J. MacFarlane, J. Math. Phys. 5, 565
(1964). In comparing our results with those of the quoted
aunthors, one misprint (a minus sign) in the 7th equation of
their Table III was found.

¢ J. Ginibre, J. Math. Phys. 4, 720 (1963).

v J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
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TaBLE I. Matrix elements of Z4® for (A) = (k).

Q) ((R), BiR, B2’| Z3 |(h), RiRS, RAVXCR]| 2 ||R)™

Rm—h&+mm—hb+MM—hr+MM—Mq*
L(h1 - hs + 2)("«1 — b + 1)(h1 - hz + 2)(h2 - h3)

[w—m+nw—m+m%—M+nw—wT
(hz - hs + 1)(h2 - ha + 2)(h1 - hs + 2)(h1 - hz)

[w—w+mw—m+m%—m+nm—m+nT
(s — s + Dby — hy + Dby — by + 2)(l — by + 3)

h1+1hg—1h3

h1h2+1h3—1

h1+1h2ha_1

(ks — M)A — hy + V)(hs — ho)(h{ — hy + 1) T

hihy = 1hs 1 [(lh = ks + D(he — ho)(he — bs — (ks — kg + 1)

[w—mm—M+nw—ww—m+nT

by — 1 hy by + 1 (hy — ha)(hy — b3 + Dby — h3)(hy — ho)

[ (hy — R)(hy — B 4+ DR — ho)(hs — B} + 1) ]’

= lhtlh |G e+ Db — hs + D0 — k) — s — D)

TasLg II. Matrix elements of Z,# for (k) = (k). 4, B, C are defined by (3.24).

af h{ R R ((B), KRS, RY’| 25 |(R), hiks, hi’)

(hz — é)(h{ — hy + 1)(H2 _ Ha)
(}h — ks + 1)(h2 - ha)

(h'l - h{)(hl - h; + 1)[(h1 — ks + 1)(H1 - Ha) + Ha - Hz]
(hy — h)(hy — by + Dby — by + 1)

33 ki hg B H; 4-

+

M —1hh’—1  [B+(h+ b+ ks — ki — DCK(R), i — 1 R4, B’ — 1] @3 [(B), kRS, hi’)

31
Wb —1h'~1  [B+ (b b+ by — h{ — 2)CK(H), hiki — 1, b’ — 1| € [(h), h{k3, h{")
13 MEIME A1 [B+ (b + ba + hs — hi — DCK(R), hiks, k'] €5 [(B), B + 1 B3, B’ + 1)
KB+ 1A' +1 [B+ (b + ke + ks — B — 2)CK(R), hiks, h{’| €5 |[(B), Rik4 + 1, B + 1)
39 h{ — 1 kg ki’ [B+ (ko + ha + by — ki — DCK(R), k{ — 11, h{’[ €5 |(), hiR3, h{’)
R k3 — 1 R (B + (b + ha + by — h] — 2)CK(R), Kk} — 1, h{’| €5 [(h), hik, R{’)
23 h{ + 1 ks b’ [B+ (s + ha + ko — hi — DCK(R), hiki, b{’| €3 [(B), B + 1 &5, A{")
ki hy + 10 [B+ (ha + ho + ks — b — 2CK(R), hik}, '] €5 |(B), hiks + 1, (")

B4 1k — 1R — 1 C{R), M + 14k — 1, b — 1] @ |(B), B + 1 &}, RL")
X (W), hihi, B’| €3 |(R), ki + 1 B4, R’

21 Al — 1k, + 1R —1 C(B), Wl — 1k + 1,k — 1| @ [(h), hlhS + 1, h{")
X ((R), kiR, h{’| €3 |(h), RiR5 + 1, B{’)
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TasLe II. Continued.

of  h{ ki Ry (), Rihi, '] Z5 |(h), hihd, BY')

B R — 1 [(hf — & + DG — WP

@+{m+m-b+ = M) = he + DL = hs + 2)

(h1 - hz + 1)(h1 - hz )

_J%—m+ﬁ@—m%m—m+ﬁ}
(hi — ha)(hy — ha + 1)

R+ 1R — 1R+ 1 C(R), ki + 145 — 1, B’ + 1] €5 |(B), bl + 1 ki, hl’ + 1)
X {(B), hihs, hi’| €5 |(R), b - 1 B4, B{’ + 1)

12 B — 1A+ 1R +1 C(B), R — 1R+ 1,h+ 1] € |(A), RS+ 1, R + 1)
X {(h), hih}, hi'| @5 |(B), hihi + 1, B’ + 1)

B, Ry R 41 [(B, — B — B + DI
(hl - h;)(h{ - hz + 1)("; - ha + 2)
(hy — by + 1)(h{ — bz + 2)

(h’ — ks + 1)(h2 - hz)(hl _ h' + 1)]}
(h, — BY)(h, — K, + 1)

X{B+C[h{+hé—l+

hi + 1 ki — 1Ry C{(h), B{ 4+ 1 ks — 1, Y| @3 |(R), B{ + 1 R, h{" + 1)
X {(®), hihs, B{’| €3 |(R), h{ + 1 b4, B’ + 1)

11 R~ 1hb+ 1R C(R), R — 1k, + 1, k| € |(h), hihs + 1, B! 4+ 1)
X ((R), hing, B'| @5 |(B), RiRS + 1, B’ + 1)

hi h; R’ A+ Bh' + C‘[(h{’)2 + (B — KOG — k4 1)

— B, — by + DL — hy + DR — W+ 1)
(i — ks + Db — by + 2
(rs — m+mw—mw—w+nw—vﬂ
hl — (K, — s + 1)

4 B

+

R4 1h— 1R C{h), k + 1R, — 1, | € |(h), ki + 1 S, h{")
X {(B), hih}, B{’| €3 |(R), hi + 1 ki, B{")

22 K —1ht+ 1R C{(h), ki — 1 ks + 1, h’| €3 |(B), hiRk + 1, B")
X {(h), hiRs, hi’| @3 [(h), BiR; + 1, BY%)

hi hi B A+ B(h + b — BY) + C[(h(’ — W) — B+ 1) + (B + b — B

— B — by + DB — by + D, — B + 1)
(hl - hz + 1)(h1 - hz + 2)

w—m+nw—mw—w+mw—w]
(hl - hz)(hl - hz + 1)

4 &
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ological alternative to the current tensor methods."

As far as the ME of irreducible tensor operators are
concerned the method here presented for the octet
operators may be applied, mutatis mutandss, to the
tensor operators of a given rank, associated with a
given IR of the SU; group.

2. THE BASES FOR THE SU; GROUP
A
The bases for the unitary IR of U, labeled by
[h.hohs] are given by®'*?
[Rihahs, BiRS, BI7Y = Bl Brii(en™ ™" (L
X (63)7':—7!: P[h;h:’u](b‘“) IO) (2.1)

where @2 are the infinitesimal generators of U,
which may be expressed in terms of fermion creation
and destruction operators b/,, b* as

GEL’FAND-MOSHINSKY BASES IN UNITARY SYMMETRY

' =1,2, 3). 2.2

= 2 bub*"
From the anticommutation rules for the fermion
operators it follows that

[eﬂx H el‘::l] =

The index u is the one affected by the unitary
transformations of the group and the index s is
here considered as a particle index (s = 1,2, -+, n).

In (2.1), P (B! 30) = |hihohs, Bih, b,) is the
highest-weight polynomial in the b:, and is asso-
ciated with a Young tableau of three rows, as de-
scribed in Ref. 3. Further,

e: + 1) + eze;,

which, like @} and €; is a lowering weight operator.
The normalization constants are found to be

s’ ap1’ B1' ons’
C.. 5#- — G, 6»- .

2.3

L; = e3e; — 2.4

B [w—mwm—mw 2.9)
ymh_[ (i — bl + D! (AS — k)1 (Bl — by + D! (AL — B))! ]& 2.0
L (hl - h; + 1)! (hz - h3)! (h] — h3 + 1)! (h1 - hz)! (hz - h’z)! (hl - h;)! ) ‘

The nonnegative integers hJ, hj, h{’ satisfy the branching rules
hy 2 h{ 2 hy 2 ki 2> hy 20, @1

hi 2 ki’ 2 k.

The states (2.1) of a given IR are defined up to an over-all phase factor.'?
The ME of the generators of U, may be calculated using (2.1) and (2.3).° For future reference, we give

here the results of the nonvanishing ones:
((h), hihs, RY'| @ |(B), hihs, B') = RY’,

(), hiRg, bl’| 2 |(h), hikS, BI'Y = B + B} — hI’,

<(h)1 hl,hzl h{II ea l(h); hl’
((B), hihs, hi’

2;h{,)=h1+hz+h3_h1'_
— 1] @3 |(%), Rihs, hI) = [(B — B’ + DRI — )P,
— kM 4+ DRI — k)AL — ks + DRI ~ B |

ks,

«wm—1%;Mﬁme,m=E%

(hi — h)(hi — by + 1) ], (2.8)

(b — h)(hy — k5 + 1)(hy — hi + 2R — b + 1)

((B), hiki — 1, h{’] @3 |(B), ki, B’) = l:

(h1 - hz + 1)(h1 - hz + 2) ]

(hy — B 4 D(h] — k)AL — ks + DRI — h)

(), ki — 1 hi, ki’ — 1| €3 |(B), hiki, BY) = [

(hy — h)(by — bz + 1) ]

((R), hiks — 1, b’ — 1] €3 [(), hik3, h{’) =

_U%—

(B) = hihahs.

M@—m+nm—m+mw—w+nT
(hy — 1 + Dy — by + 2) ’

10 N, Mukunds and L. K. Pandit, J. Math. Phys. 6, 746 (1965). See this article for other references to the literature on

this field.

ujJ, Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965).
12 However, later on we shall adopt a more convenient phase convention, in connection with the definition of the

regular operators.
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The ME of €}, @}, and €} are not given explicitly
as they can be obtained from (2.8) since (€))! = €.

Notice that the ME of €% between states of
different IR’s vanish.

B

To get the corresponding basis for the SU; group,
we note that the operator bl bibl is an invariant
under SU; and corresponds to a complete column
of a Young tableau of U, In fact, making use of
the relation bLbibl, = e.5,b1.03,05,, We have
1 biblYy = det U-b!blbl, and one sees at once
that for unimodular unitary transformations the
mentioned operator is an invariant. Therefore, hg
complete columns of the Young tableau associated
with P™**!(p') |0) is an invariant under SU,
which can be factorized in (2.1) since it commutes
with the lowering weight operators. Then a basis
for the IR of SU; is obtained suppressing the block
of 4; complete columns and reenumerating the index
& {due to the irrelevant shift of h; units in s) and
we have

[flfm flr 47 f)l.’)

= !hl b hghg - h30,h{ — hah; - h3, {'_‘ hg).
(2.9

For the f's defined by (2.9) similar branching
rules (2.7) hold.

By counting the states (2.9) it follows that the
dimension of a given IR [f,f.] of SUs; is

fs f1
dim[ffi] = 2. 2 H—f+1D

fa'=0 fi'=Fy

$th — o + DG+ 290 + D).
c

Contact with physies is made by identifying,
among the generators of SU; €%’ = €4 — 484 Tr e,
physical quantities like the hypercharge and isospin.?
These are defined by

I, = 3(ef + e,
I, = —§i(e; — &),
I, = }(e1 — e,
Y = —[ef — ¥(er + e + &)l
It follows from (2.8) that
I* |fif5, 11 = 3f1 — B — 5+ 2 Ififs £,
L s, £ = 3@f — i — 1) 1fifs, f7 (2.12)
Y Ififs, 11 =[G + 1) — 3 + 1 Ifife, £
Here [fif3, i) = |fifs fift, fi7)-

(2.10)

(2.11)
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From the first of Egs. (2.12) one sees at once
that I = £(f{ — fi). Further, assuming the Gell-
Mann-Nishijima relation ¢ = I, 4 1Y, we see
that the eigenvalues of @ for a given IR [fif.] of
8U; are given by

Q= 1" — 3 + f). (2.13)

Then, integral charges appear for IR such that
fi + f: = 0 (mod 3), otherwise one gets fractional
charges.

The full basis for the representations [10] and [11]
are easily seen to be

10, 1) = by, |0) |11, 1) = bi,bs [0)

110, 0) = b;, [0) and (10, 1) = b},by; |0)

100, 0) = b;, |0) 110, 0) = babs [0).
The states of [10] are associated with a triplet
of “fundamental particles’” of fractional charges
while those of [11] may be associated with the cor-

responding antiparticles.
In faet, let us consider the operator

¢ = 3e*7b,bh, (2.14)
which transforms under a unitary transformation

U as
tatyy __ 1 aBrpr8iyrriat gt
() = 3*°"Up U7 bgrabynse

I3 % ]
As 7 = §2,6°7" = UL.U,**"*", we have
% ¥ ¥ + ot t
(') = 3U, P UL UF U bgabyns
ta t
= (det )U,%™.

Therefore, for unimodular transformations, the ¢t*!

transforms contragrediently with respect to the bl,.
In terms of the ¢!*! the states of [11] are given by

110, O) = cfu lO),
10, 1y = —c™ |0),
111, 1) = ¢™ |0),

and we may interpret c'*' as a creation operator
for the “fundamental antiparticles.”
For the representation [21] we have

|21, 2) = bl,bibi, |0),

21, 1) = —b},bhbss |0),

20, 2) = bl,biubi, |0),

120, 1) = 27}(biibisbe; — bisbabs) |0),
|20, 0) = B3,bsabs, 10),

|11, 1) = 67Hblsbbl; — 2b1:b5bls + bliblbly) [0),
10, 1) = —byibsibss [0,

[10, 0) = —b,baibsa |0).

(2.15)

(2.16)
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According to the eightfold way' both mesons and
baryons are included in this representation of SU,.
This is realized in (2.16), the baryons being de-
scribed by products of three creation operators
associated with the particles of the IR [10]. Equations
(2.16) conduct to the same pictorial representation
of Zweig® of a triangular structure for the baryons.
On the other hand we can rewrite (2.16) as products
of the form ¢t*’b;,., using (2.14). For example,

11, 1) = 674c"™b], — 2¢"bs; + ¢™'b12) |0)

describes a composite structure of a ‘fundamental
particle” and a ‘“‘antiparticle” associated with a
meson. This conducts to the dumbell structure of
mesons of Zweig. Similar considerations are valid
for other representations.

3. THE MATRIX ELEMENTS OF THE
REGULAR OPERATORS

A

We now introduce the concept of irreducible
tensor operators of the SU; group in a similar way
to that usually done for the E; group. An irreducible
tensor operator of rank [f] = [f,f.] is a set of dim [f]
operators T!!,.., .. that transform under unitary
unimodular transformations U like the basic ele-
ments of the representation [f] namely

UT;{]U E DU! (U)T[fl

T}E’ ! =
(3.1)
= (fifi, 7).
For infinitesimal unitary unimodular transforma-
tions we have
U=1-¢es,

DYLU) = (D, Tl 1 — et |, 1,

i

(3.2)
(3.3)
where

* = —&; (e =¢.

Substituting (3.2) and (3.3) into (3.1) we have
in the first order in €3

[e%, T/7] = Z((f) Fleelm, mHri.

In the following we are interested in the calcula-
tion of the ME of irreducible tensor operators asso-
ciated with the octet representation [21] of SU,.
In this case, (3.4) may be put in a more convenient
form with the introduction of the so called regular
operators Z£° These operators transform under
SU, like the generators @£ and are related to the

components of the tensor operators T2}, , .. by

(3.4)
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o = —Zj, o = 27%Z; — 7)),
o = Zs, hos = Z1, 3.5)
0=z, mi = Zs,
00 = —Z, e = Zi.
From (3.4) we get

(€%, Zi] = 2,85 — Z%6., (3.6)

with
TrZ =0 (3.7

provided we take the phases of the states |21, f{f5, f1*)
according to the following convention: the states
|21, 21, 2), |21, 21, 1), |21, 11, 1) have all the same
phase, opposite to that of the remaining states of
the octet (Biedenharn’s phase convention®).

The use of the simpler commutation relation (3.6)
introduces considerable simplification for the cal-
culation of the matrix elements. The ME of Z/
are in following calculated without the restriction
(3.7), therefore our results hold for the U, group.
The condition (3.7) and the correspondences

hi — hy = §;
ki — hy = f} (i=1,2) (3.8)
1" — hs = f{
will be used when we go to the SU, case.
B

We now outline the method to obtain the ME
of Z£ between states of any IR’s of the U, group,
making use of (3.6), (2.8), (2.7), and (2.1).

First of all, we look for the nonvanishing ME
of Z5. From [e Zj]=0(a=1,2)and [C}C} Z}] =0
we see that for the ME of Z}, namely

((h), Ak, ki’ |Z3) (R), RiRS, BL%),
the following relations hold
ﬁ{' — R’ = %(ﬁl 4 ﬁz + Ea —h — b — hs),
B, + Ry — R = h] + by — b}’
+%(ﬁl+h2+ﬁ3_hl_h2_h3))

(i — KB — kg + 1)
= (h{ — BYBY — B + 1).
Putting
— W o=n, H-—K=m B-k=p,
we have n = m = p. Then, the only nonvanishing
ME of Z% is

((R), B, +n b +n, b’ +n| Z3 |(B), KRS, b)Y (3.9)
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with
hy + hy + by = hy + hy + hs + 3n. (3.10)

By (2.7), n is an integer equal or greater than
—hs. From now on, we restrict ourselves to the case
n = 0. As far as ME are concerned, this restriction
implies that (3.6) holds also for €f. Further, for
ME between states of SU,;, (3.8) show that the
value of n is irrelevant, since they deal with dif-
ferences of A’s. For n # 0 see Footnote 13.

By similar considerations we find out that the
nonvanishing ME of the remaining tensor com-
ponents Z £ are those listed in formulas (3.21).

One sees at once that maintaining fixed (%) and
(%) we have 21 nonvanishing ME. Since, as will be
shown later, we have 7 possibilities for (k), the
total number of nonvanishing ME is 147.

Next, we calculate the ME of Z3, since later on
it will be seen that the sole knowledge of them
allows us the determination of the ME of all the
remaining components Z 2,

Making use of (2.1), (2.4) and [Z}, (€)' =
n(C3)"'Z3, n = 1,2, ---, we have

((R), ks, bi'| Z3 (), hiki, hi')

= Bait((R), hiks, hi| (L)™'
X (€)™ Z; |(B), hahay ) + (Ry — RY)
X (b — B + 1){(R), hik3, hi| (L)™'
X (€)™ Zy [(B), huhay B + (R — BY)
X {(h), hihs, Bi| (L)~
X (€)™ Z; |(h), hika, Ba)).

On the other hand by (3.9) we get
Z; |(B), hib, by) = _(/"7‘), (R), huha, BoY(R), Ruba, By
X Z3 |(h), haha, ha),
where according to (2.7), the (%) is subject to
Fo > hy > by > hy > ha.

(3.11)

(3.12)

(3.13)
Putting
by — hy =1n, >0,
we get
Z3 |(B), huhoy By) = 2 [Bine™ |Rahahs, haha, hy)

hahs

X (Rihsha, Rihey ha| (LD™Z3 |(B), Biha, hi)
+ E nzBE:ﬁ:E |(ﬁ); haha, hx)«ﬁ); ﬂlﬁzy ﬁll

X @)™ (@)™ 'Z; |(B), hiha, br))
L = (L),

ﬁz'—h2=n220)

(3.14)
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where use was made of [(€})", Zi] = mZ3(e})™ ",

m=12 .
As @3 |(h), hihs, hy) = 0 we have only two pos-
sibilities for n,; these are: n, = 0 and n, = 1.

(i) FOr Ng = O, i.e., h-z = hz,
Z3 |(h), huha, ha) = 2 [Bik™ |hihohs, haha, i)
ks

X (h,hziia, hihg, by z: ®), hihs, by
+ (hy = ha + 2) X Bib™ |Rihoha, hohg, i)

ni21
X (hahohs, Buhay ny| (LD™7Z3 [(B), ik, hy)). (3.15)

Since L3Z3 |(h), hyhs, hy) = 0, we have two possibilities
forny:n; = 0and n, = 1. When n, = 0, i.e., h, = hy,
hs = hs, (3.14) reduces to an identity. When n, =
L,ie,hy =h +1,hs = by — 1,
Zg l(h), hlhz, hq) = (hl - hz + 2)
X B::;,l habemt |h1 4 1 hohs ~ 1, hxhzy hl)
X<h1+lh2h3_13h1+1h2)h1+1l
X Z3 |(B), hiha, ha). (3.16)

(ii) For n, = 1, i.e., h, = hy, + 1, we see by an
analogous calculation that_only one possibility for
n, arises, viz. n, = 0,1.e., hy = hy, hsy = by — 1,

Z3 |(R), hiha, By)

= B:::;“" he-1 lh1h2 + 1 h3 - 1, hlhz, hl)
X (hlhz + 1 h3 - 1: hlh2 + 1; h1|
X Z3 |(B), haha, ha). (3.17)

The possibilities contained in relations (3.16) and
(3.17) give for (3.12) the final result

Z3 |(h), haha, By)

= |(B), hakay RX(R), Buha, Ba| Z3 |(B), hiha, by
+ [(hy — by + DBy — by + )]
X Lilhy + 1hohy — 1, by 4 Loy by + 1)
X (hy + 1hohy — 1, by + 1 hoy by + 1]
X Z3 |(h), hihay b + (he — by + 2)7
X @3 |hhs + 1 hy — 1, byhy + 1, By)
X (hihy = 1 hy — 1, hihy + 1, hy|
X Z3 |(h), hoha, ). (3.18)

By similar calculations one can easily evaluate
Z3 |(h), hyha, hy) and Z3 |(RB), hyhs, h,). These results
give for (3.11) seven different ME for Z2 which are
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shown in the Tables I and II. The possibilities for
(%) contained in the tables, for the SU, case, are
related to the IR’s envolved in the decomposition
of the Kronecker product {Jif;) & (21).

Finally, we notice that the ME of Z£ are obtain-
able from those of Z} by judicious choice of the
commutation relations (3.6). For example, from
[€}, Z}) = Z% we have

(R, Rk, Ri'| Z3 |(R), hiki, hi’)
= ((R), hihs, kY| @1 |(R), hiki, hi%)
X ((B), hihs, B’ Z3 |(), Bihs, hi’)
— ((R), hiks, BY'| Z3 |(h), Rihs, BY')

X (W), hihs, RY’| € |(h), hiki, BY)  (3.19)

(), hik, h{* — 1| Z; |(h), hihi, h{")

(), KRS, '] Z3 |(h), hikd, Bi)

((R), B + 1B — 1, i’ ~ 1| Z; |(h), hihi, hi")

GEL'FAND-MOSHINSKY BASES IN UNITARY SYMMETRY

and therefore, using (2.8) and Table I we get the
ME of Z3.

In the case (&) = (k) each component Z £ conducts
to a “reduced matrix element”

((ﬁ); EIEE: El; Zg: {(h)x klhﬂ!: hl)
which can be now written as a single one,

B Z k) = 2 A(R), Fuka, Ra| Za |(B), Baba, B
“* (3.20)

Notice that (4|| Z||h) is actually a reduced matrix
element since the bras and kets occurring in (3.20)
are highest-weight polynomials.

The results for (k) > (k) may be cast in a re-
markably simple form by introducing a function

P

(3.21a)
(3.21b)
(3.21¢)

(3.21d)

= H(huhohsh -+ 1Ry — D((RY, hi + 1 hy — 1, Y| Z3 |(B), B} + 1 ks — 1, h}")
X ((h), ks — 1, " — 1| 5 [(B), RikS, RIPX(RY, ks — 1, h{ — 1].€3 |(B), h{ -+ 1 hs — 1, R’ — 1),

(R, b — L hs + 1, ) — 1] Z3 |(B), hiks, B

(3.21¢)

= tfhohshi — 1 hs + D{(R), ki — Ly + 1, B’ Z3 |[(R), B — 1 b + 1, B!
X (), b — 1 b3, bi* — 1] € [(B), ki, BPX(R), BY — 1R, Bi" — 1] €5 [(B), B — 1 R5 + 1, R’ — 1),

= —[(a{ — )AL — hs + 2)t(hahhshlB))] 7 [(RY —

(B ahi + Lk — 1, B’ + 1| Z2 |(h), hihs, BL%)

(3.21f)

DG — B+ DINR), hiks, BI'| Z3 (), hikS, BL'),

(3.21g)

= t(hahahsh! + 1 By — DAY, ki + L B} — 1, hi’| Z3 |(B), BY + 1 b} — 1, B{")

X (), Bkt ~ 1, hi'| € |(R), hihd, BI/X(R), hihd — 1, Ri’| €} |(W), hf + L B, — 1, b’ + 1),

(By, bl — 1B + 1, " + 1] Z2 |(B), RIkS, BL")

(3.21h)

= Uhhohsh] — LR + D((R), B — L hi + 1, h{'| Z5 |[(B), b4 — 1 B5 + 1, h")

X (1), b — LR, k'] €3 |(R), hikd, RIK(R), b — 1 R4, Bi’| @ [(B), ki — 1R + 1, B + 1),

3.213)
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((h), hihi, B + 1| Z3 |(h), hikf, B')
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= ~[(bl — B)(RL — hi + DtuhohshibDT (] — MO — ki + DIN(R), Riks, k') Z3 |(R), hiR3, BL%),

((R), B! 4 1 Al — 1, B)’| Z3 |(h), hiR%, RI)
= —((&), bl + 1 b} — 1, h'| Z} |(B), BiRS, BI7)

It

((B), k. — 1R + 1, B!'| Z3 |(R), RiRS, BL%)
= —{(h), B{ — 1 ht + 1, h{’| Z1 |(h), hik3, BI')

3.21p)

Hhhohsh! + 1 b5 — 1{(R), B{ + L ks — 1, R{’| Z3 (), b + 1 B} — 1, h{")
X (), b 4 1 k5 — 1, B{’| €3 |(B), h{ 4 1 ki, h{")X(R), hih3, h{’| €5 |(B), R + 1 k4, h{"),

(3.21k)

= t(hhohshi — 1 hy + D(R), h{ — 1 ks + 1, h)’'| Z3 |(B), B{ — 1 B} + 1, B{")

X ((h), k{ — 1 kS + 1, Bl’| @ |(B), hiki + 1, R{'X(R), hihs, Bi’| €3 |(B), Riks + 1, B,

((R), hiks, hi’| Z3 |(h), hihi, Ri')

(3.211)

= —((B), hiki, hi’| Z5 |(), hihi, hi’) — {(R), hiki, hi’| Zi |(h), hiR3, hi’)
= —¥®), hihi, bi’| Z3 |(B), hiks, BPML + (R — h)(hi — G + 217" (] + s — 2R1)i(hahohshiRy)},

Let us consider the matrix element ((A), A{kS, h{|
Z |(h), hiR4, R}’). The indices ¢, j, k, p, g are such
that in the bra we have

};,' = h,' - 1;

hy =R, +1;
p or ¢ vanishing when there is no A’ correspondingly.
For example, in the bra (h; — 1 hohy + 1, A — 1

R, B — 1llwehave? = 3,j =1,k = 2,p=
0, ¢ = 1. Then t = t,t,t; with

hk = hk;
Ro=h -1,

h.=h,+1;

t—{ 1 if p=20
L=
h.—h:,a‘l'p—‘& 1fp¢0,
{ 1 if ¢g=0
t, =
hy —hi+qg—j+1 if ¢#0,
f = 1 if p#£0or ¢g#0
=
R+ ki — 2k, + 2k — 4 if p, ¢ both
equal to 0.

The case (k) = (h) is shown in Table II, where
the results are written in terms of the “reduced
matrix elements”

Hyh) = {(h), haha, ba] Z§ |(B), Baho, Ba). (3.22)

This separation was made in view of the different
structure of the formulas for (2) # (k) and (&) = (k).
Formulae (3.21a) to (3.21lm) are valid for the

(3.21m)

U, case and n = 0.”° To get the ME for T}2},, ;...
we simply go to the SU, case through the relations
(3.8) and use the definition (3.5).

The case () = (k) corresponds to that con-
sidered by Okubo and find direct application when
the breaking interaction (transforming like a definite
component of Z?) is taken in first order of perturba-
tion theory, thereby neglecting the representation
mixing.

The formulas contained in Table II may be
written in the form of Okubo’s theorem®

((h), Riks, R \Z5| (B), RIS, BY%)
= {(h), hihs, R'| A &,

+ B + cesel (), Bk, By (3.23)
where
A = H, — hB — KC,
B = (hl + hz _ 1)(H2 - Hs)
(hy = hg 4+ )(hy — Bhy)
- (hz + hs — 2)(H1 _ Hz)
U= ha & Db — by * &2
c = 1 [HI—H,_H,—H,]
hl—ha+1 hl—hz hz—hs ?

where the H,’s are defined by (3.22).

18 The case n > —h, referred to in (3.10) only introduces a
shift of n unities in the A’s of the bra appearing in the ‘reduced
matrix element” (3.20) and (3.22).
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We wish now to connect our results with the
Wigner—Eckart theorem for SU, as discussed by
de Swart.” The Wigner—Eckart theorem in his nota-
tion is
(¢(M-) T(u-)¢(u:)) — Z (Ml M2

s 2 ’s 1438

T

LS Y

)l 7 ),
(3.25)

where the index 4 runs over the number of times
the representation {u;} is contained in the product

{m} @ {ma}.

The function
(Ilvl He Ma)
141 Va V3
is the Clebsch—Gordan coefficient of SU, and

(us|] T™* ||u) is the reduced matrix element for
which the following result holds

(sl T {lm2)

- _1_ <I41 2]
Ns A1dads )\1 >\2

where N; is the dimension of {u,}.
The relation between our notation and his one is

(W) = ()‘ﬂ) = (h — fay f2)7
(V) = (IIIY) (3.27)
= G(fi—12), 3Cf' —fi—1), A+H—30+1),
¢:“) —>e€ l(f)) fifss i)

where ¢ is a phase factor that accounts for the
relative phases between states of the same rep-
resentation according to the phase convention*

(i) states with the same f{ + f; and f{ — f}
have the same phase;

(ii) if for a given state |(f), fifs, 1i’) the branching
rules allow the existence of |(f), fi + 173 fi’ + 1)
and |(f), fifi + 1, fI’ + 1), we attach to |(f), fi +
1f;, fi’ + 1) the same phase of |(f), f] f;,fi’) and
to |(f), fifs + 1, fI 4 1) the opposite one.

This phase convention is in agreement with that

B, TEOBE),  (320)
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used by McNamee and Chilton' in the computation
of his tables of Clebsch—Gordan coefficients of SU,
and for (f) = [21] is the same as that used in the
derivation of Eq. (3.6).

Taking into acecount this correspondence of nota-~
tions we may put our results in the form of the
Wigner—Eckart theorem. It may be shown that
when (f) = (f) our “reduced matrix elements” are
linear combinations of those of the Wigner—Eckart
theorem. When (f) = (f), Egs. (3.25) and (3.26)
give the result

G 9 = XD, FITE 10, 1Y 3.28)

!l'f'lfl

and one sees that in this case our ‘“reduced matrix
elements” are proportional to the Wigner—Eckart
ones.

As a consequence of the above comparison, we
may derive analytical formulas for the Clebsch—
Gordan coeflicients of SU; involved in the given ME.

D

Finally we wish to point out that the same method
may be applied for the calculation of the ME of
tensor operators associated with an IR of SU,
starting from the definition (3.4).

The fact that for a given IR of SU,, there exists
a single state [(f), f.f., f.) [a result which follows
directly from the branching rules (2.7) for the fs]
may be of considerable help since the associated
tensor component T}/}, .. plays a similar role as the
T3 = (3)'Z% in the present context. Therefore,
the ME of the remaining components can be ob-
tained from that of the T/}, .
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The technique used by Faddeev to obtain connected equations for the nonrelativistic three-body
T matrix is generalized for four particles. It is shown that the four-body equations are completely
determined by the solutions of all the possible two-body subsystems, as is the case in the three-body
problem. This approach can be extended to more complicated multiparticle systems.

1. INTRODUCTION

HE study of nonrelativistic scattering processes

that involve more than two particles has re-
cently received considerable attention.'”* When the
particles interact only by pairs, and there are no
multiparticle forces, the problem cannot be ap-
proached by means of the Lippmann—Schwinger
equation.® The main reason for this is that the
Lippmann-Schwinger kernel D> ;; Vi;(E — Hy)™
is the sum of disconnected parts in each of which
(N — 2) particles are not interacting. In momentum
space, this yields (N — 2) delta functions in addi-
tion to the over-all delta function representing con-
servation of momentum. Consequently, the kernel
is unbounded and the equation is strongly singular.
This difficulty cannot be removed by iterating the
equations; any iterated kernel will still contain dis-
connected parts. The only possibility of obtaining
equations that may be solvable by one of the
standard methods is to apply one of the usual
tricks for handling singular integral equations. It
consists of solving in some way the singular part
of the kernel in a closed form, in such a way that
the remaining equation is nonsingular. In the case
we are considering, it amounts to recasting the
Lippmann-Schwinger equation into a connected
form, by previously solving some pieces of the kernel
in an explicit way.

* This work was done under the auspices of the U. S,
Atomic Energy Commission. . .

t Permanent Address: Universidad Nacional de La Plata,
Argentina. Fellow of the Consejo Nacional de Investigaciones
Cientificas y Technicas of Argentina. This institution neither
approves nor assumes any liabilities for the information con-
tained in publications by its Fellows. )

1L, D. Faddeev, Zh, Eksperim. i Teor. Fiz. 39, 1459 (1960)
(English transl.: Soviet Phys. —JETP 12, 1014 (1961)]; Dokl.
Akad. Nauk 138, 565 (1961) and 145, 301 (1962) [English
transl.: Soviet Phys.—Doklady 6, 384,(1961) and 1,600(1962).

t C. Lovelace, in Strong Interaction Physics, edited b
R. G. Moorhouse (Oliver and Boyd, London, 1964); also C.
Lovelace, Phys. Rev. 135, B1225 (1964).

3 8, Weinberg, Phys. Rev. 133, B232 (1964).

¢ L, Rosenberg, Phys. Rev. 135, B715 (1964).

s B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469
(1950).

This problem was solved for the general N-body
problem by Weinberg.> We refer to his paper for
a very lucid discussion of the difficulties associated
with the multiparticle scattering problem. Huntziker®
has given a general proof of the compactness of the
Weinberg kernel, providing certain assumptions are
made about the potentials. In the four-body prob-
lem, for example, the Weinberg equations require
a knowledge of the solutions of all the possible two-
and three-body problems involved, as well as of the
potentials V;.

In the three-body problem, another possible solu-
tion was proposed previously by Faddeev.” In place
of having only one equation for the three-body T
matrix, he proposed a set of three coupled integral
equations. But the counterpart of this slight com-
plication is that the Faddeev equations do not de-
pend upon the original potentials. The inhomoge-
neous term and the kernel of the Faddeev equations
are completely determined by the off-the-energy-
shell two-body amplitudes. This property of the
Faddeev equations has been used by Lovelace® to
propose a practical theory for three-particle proc-
esses, in which experimental information about the
two-particle subsystems is used to determine par-
tially the off-shell two-body amplitudes.

The purpose of this paper is to generalize the
Faddeev approach to the four-body problem; that
is, to get connected equations in which the two-body
potentials do not appear explicitly. It is possible
to go on and get similar equations for more than
four particles, but we will not do so explicitly in
this paper because the four-body problem is suffi-
ciently complicated to illustrate the general tech-
nique. In See. II we review briefly the derivation
of the three-body Faddeev equations. In Sec. IIT
the four-body problem is formulated and some pre-
liminary results are derived. In Seec. III, the four-
body equations are derived; and finally their prop-
erties and possible importance are discussed in Sec. V.

¢ W. Huntziker, Phys. Rev. 135, B800 (1964).
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II. THE THREE-BODY PROBLEM

Consider the Hamiltonian

H=H,+YV, 2.1
where
H, = ,32,5’;1% and V=V 4 Via+ Voo  (2.2)
When the resolvent operators of H, and H,
Ge) =@—H)"; G =@E—H", (23

are introduced, the three-body T’ matrix is defined by

GR) = G + GDTE)G(). 2.4
Using the resolvent identity
GR) = G2 + G VG, (2.5)

one obtains the Lippmann-Schwinger equation,®

PR =V + VeRV =V + Va,@TE. (2.6
Faddeev' defines the following operators
T.‘j(Z) = V,',' + V.','G(Z) V. (2.7)

Clearly, the three-body T matrix is given by the sum
T’(Z) = Tn(z) + Tla(z) + Tza(Z). (2.8)

The Faddeev equations are coupled integral equa-

tions for the 7T;;(z). In order to obtain them, let

us consider the resolvent of the Hamiltonian H,; =
H ] + V.‘i,

G = [z — Hyl™.

The two-body 7' matrix for particles ¢ and j in

the three-body Hilbert space—i.e., with particle &
as a spectator particle—is defined by

ti@) = Vi + ViuGu@ V., (2.10)
and satisfies the Lippmann-Schwinger equation,
Li@) = Vi + ViuG@)1t:). 2.11)

It is trivially related to the solutions of the two-
body problem, #;;(z), by

@:p:p:| 4::(2) [pipiPL)

2.9

= 8(ps — p)P::| Ll — Pi/2mi) [piD).  (2.12)

The identity
GR) = G + Gu@Va +.VulG@); i#j=k
(2.13)

can easily be shown, and by inserting (2.13) into
(2.7) we get

A. ALESSANDRINI
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T.’;(Z) Vi + VGV
+ ViGu@[Va + ValG@V
=V + VGV
+ ViiGi@[Va + Vil
+ V,‘,‘G.‘,‘(Z)[V,‘k + V,'k]G(Z)V.
By using (2.11), and also the Lippmann—Schwinger
equation for ¢;;(2) in the form G,;(2) Vi; = Go(2)t::(2),
one obtains
Tii(z) = 4@ + 1;@)G:R)
X [Va+ VaG@V + Vi + ViuGEV].
Finally, using the definitions (2.7), this equation
becomes
T.-i(z) = 4;(@) + 1.:()G:() [T;k(z) + Tik(z)]
for 72,j,k=1,2,3 and 73 j=k. 2.19)
These are the Faddeev equations. Because of the
fact that T.;(z) is not coupled to itself, the first

iterated kernel is connected. Assuming that the
potential satisfies

i@ =) =Cl+(g— NI «>0, (2.15)

Faddeev proved that the first iterated kernel is
compact, except when z is on the real positive axis.!
It is also possible to prove’ that the fifth iterated
kernel is compact for any value of z.

II. THE FOUR-BODY PROBLEM

In this section, we consider a Hamiltonian of the
form H = H, + V, where

H, = Z# 3.1)
V= ; Vi, for ¢,§=1,23,4. (3.2
Here again we define
G =@ —Hy)", G@=—-H". 33

The four-body amplitude 3(z) is defined by the
relations

GRE) = Go(e) + Go@) 3(R)Go(? 34)
or

3) =V + VGREYV. 3.5)
We introduce next six operators, in analogy with
@.7),
5@ = Vi + ViuG@)V,

for 7 < j; 1, j=1,2,3,4. (3.6)

7 L. D. Faddeev, Stoklov Mathematical Institute Report
No. 69, 1963 (unpublished), translated by J. B. Sykes.
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The four-body 3(z) operator is then given by the sum
5(@) = z_‘, 3.:(2). 3.7)

Our aim is to get a set of coupled integral equa-
tions for the 3;;(z), such that they are connected,
and do not contain the potentials. This will be done
in the next section. Here, for the sake of clarity,
we want to make a few comments about the notation
we will use in the rest of the paper. If we use the
indices ¢, §, k, I it will be understood that their
range of values is from 1 to 4. When we use the
subindices 27, 2k, or %jkl in an operator, it will also
beunderstood that? < §,1 < j < k,andi < j <k <,
respectively. The two-body amplitudes of particles ¢
and j in the four-body Hilbert space will be denoted
by t:;(2); the three-body amplitude of particles ¢jk
in"the four-body Hilbert space will be denoted by
T‘¥ (2), where the upper index indicates the spectator
particles. We will use 3(z) for the four-body am-
plitudes.

The matrix elements of £,;;(z) and T*”(z) can be
written in terms of the matrix elements of the
operators defined in the previous section, in the
following way®:

{ppipip| () [pipipipl)
= 5(p: — PR o(p: — PP:p:| Liiz — i — @) [plpY),
(3.8)
{pp:pp:| TC) [pipipinh
= 8(p: — pD@pl T — ) [p'piph),

‘where w; = p3/2m,.
Let us define the operators

(3.9

H;=H,+ Vy, (3.10a)
Hu=Ho+Vy+ Vot Vi, (3.11a)
Hiu=Ho+ Vi + Vi, (3.12a)

:and their resolvents,

Gii(e) = (& — Hu’)_ls (3.10b)
Ginld) = (2 — Hs’ik)_l! (3.11b)
Gij @ = (¢ — Hiud)™ (3.12b)

We will need to use several properties of the two-
:and three-body amplitudes. The two-body ampli-
-tudes are given by

Li@) = Vi + ViGu@ Vi, (3.13)
.and the Lippmann-Schwinger equations read
V.’,’G,','(Z) = t.','(Z)Go(z). (3.14)
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The three-body amplitudes 7" (z) are defined by
Tm(z) =Vi+ Va+ Vi)

+ (Vi 4+ Vi + VidGin(?)

XVii+ Vi + Vi), (3.15)

and the Faddeev operators (2.7) in the four-body
Hilbert space read

TP@ =Vi+ ViGin@Vii4+ Va+ V). (3.16)

Their matrix elements are trivially related to the
matrix elements of the operators T;(z) studied in
the preceding section; the relation is given by Eq.
(3.9) by writing 7% (2) and T;;(z — «;) in place
of T'(z) and T'(z — w,), respectively.

The Faddeev equations for T{¥ (z) are

THE = 1@ + tE@GEITYE +TH @] (3.17)

Before going on to derive the four-body equations,
it is convenient to consider in some detail the Green’s
function, G,;..(2). To calculate it is to solve a
four-body problem in which the only nonvanishing
potentials are V,; and V,;. We shall show that this
problem can be solved in a closed form, in terms
of the two-body amplitudes #;;(z) and 7T';(z) only.

Let us call G;j 4:(2) the four-body amplitude as-
sociated with the Hamiltonian H; ,;. Obviously, we
have
G'ii.kl(z) = (Vii + sz)

+ (Vi + VidGii @ (Ve + Vi) (3.18)

Again following Faddeev’s idea, we introduce the
operators

Q@) = Vi + VG @V + Vi),  (3.19)
Cu@) = Vi + VG @ (Vi + Vi), (3.20)
Ciiu(@) = @i + Gu(d). (3.21)
Using the identity
Giiu@ = Gi;(d) + G, VG (), (3.22)

one can very simply obtain for @,;(z) and Q. (2)
the equations

Q@) = 1,2 + IOENOIROR
akl(z) = tkl(z) + tu(?)Go(z)@-'i(Z)-

Although these equations will help us in simplify-
ing the algebra in the next section, it is not necessary
to solve them to calculate e.g., @:;(z). Remember
that the Hamiltonian H,; ;; is

H:‘i.kl = H, + Vs'i + Vi
(H) + V” +h(kl) + Vkl
= hn‘ + hu,

(3.23)

(3.24)
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where
(i) pi _Ei '22—
B = o, ¥y — it foro =50, 629

(k1)
ho = Wy + @i

Therefore, G;; .:(2) is the resolvent of the sum
of the two-body Hamiltonians 4,; and h;;. These
two operators commute, because they act upon dif-
ferent spaces. Therefore, we know that if g,;(z) =
(z ~ ki)Y and gi(2) = (2 — k)", the resolvent
of h;; + hi, is given by®*®

1
Giiu(® = o f 9:i@) g — 2') dz’,

where the contour of integration encircles the spec-
trum of g;;(¢’) in a counterclockwise way (or the
spectrum of g,(z — 2’) in a clockwise way). The
reader should bear in mind that g¢,;(2) and g;,(z)
are the two-body Green’s functions in different two-
body Hilbert spaces. Therefore, the matrix element
of the right-hand side is trivial,

(3.26)

P.p:p:p:| Gii (@ IpDiPIDY)
— L 14 Ton?
= om _/; @:pil 9:() Ip'p}

X pp:| gu(e — 2) |pipl) d2'. 3.27)

Using Eq. (3.26) for G;;.;:(2) one can obtain for
the operator G.;(z) the formula

Q@) = t:;(2)
o [ L) 6 — 2)lule — 2o e — ) do
+ o [ LR — D ~ 2) d.
. (3.28)

A proof of this formula is given in the Appendix.
The matrix elements of @;;(2) are given by

@p:pp:| G (2) Ipipipipl)
= <pip1'l f-'i(z — Wy — ) [P:Pf)a(Pk —p)olp, — Pf)

1 A
+57 f dz/{p.p;| £::(2") |p'p}

X [ —2) — (we + @)]7pups] 8z — 27) Ipipl)
X [z —2) — @ + D]

+ é{; ‘/; dz"{p.p;| fii(z') lpip}

X[ — @+ o) —2) — (@ + )]

X (pip:| bz — 2) Ipip}), (3.29)

8 L. Bianchi and L. Favella, Nuovo Cimento 34, 1823
(1964).
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and in the case in which sample pole approximations
are used for the two-body amplitudes, the integrals
can easily be evaluated. A similar formula can be
written for @, (2).

IV. THE FOUR-BODY EQUATIONS

In the previous section we have introduced the
operators J,;(z); our intention here is to derive the
system of coupled integral equations satisfied by
them. Let us consider, for example, the operator
3,2(2), defined by

vi2(®) = Vi + ViGREV. (4-1)

When we derived the Faddeev equations for T’.-,
we used in the definition (2.7) of this operator an
identity between G(2) and G;;(z). We could use in
(4.1) a similar resolvent identity connecting G(2)
with Gy.(2), but the resulting equations would not
be connected. If we are to obtain connected equa-
tions, we must use in (4.1) an identity connecting
G(z) with G2(2) and all the other Green’s functions
containing the subindices 12, namely: G53(2), G124(2)
and Gz,5.(2).
The following identities can be easily shown:

G(Z) = Glz(z) + Glz(z)

X [Vis+ Vist+ Vs + Ve + VallGR), (4.2)
G@) = Gin@) + Grus@[Vie+ Vo + VailG@), (4.3)
GR) = Gi24(®) + 2@ [ Vi + Vs + VaulG@), (4.4)
G@) = Gi2,3:(2) + Gi2,3.()
X [Vis+ Vi + Vo + VaJGRE).  (4.5)
Next we rewrite (4.2) as
GR) = Gio(d) + Gn@[Vis + VlGR)
+ Gi:d[Vis + VollGR) + G0 VaiGR),  (4.6)

and insert the identities (4.3), (4.4), and (4.5) in
place of the G(z) which are multipled (in the operator
sense) by [V + Vi, [Vie + Vs, and Vs, respec-
tively. In this way, we obtain

G@) = Gi:(0) + G@[Vis + VislGiza(2)
+ Gu@[Vis + ViulGiai) + G12() ViuGiz,a42)
+ Gr:@[Vis + Vas]Gis@[Vis + Vs + ViilG()
+ G@[Vis + ValGri@[Vis + Vs + ViGR)

+ Gl2(z) V34G12,34(3)[V13 + Vit Vo + V24]G(z)-
“.7

This is the resolvent identity which we next in-
sert in (4.1), to get an equation for J,,(z), Using
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(3.14), (3.16), (3.17), (3.18), and (3.6), we find
(@) = 1) + [T170) — 8] + [T32°() —
+ [Q12(2) — 42(9)]

+ 1:()Go@)[Vis + VaslGizs(e)

X [34) + 546 + 3.()]

+ 4:()Go@[Vis + VaulGiau(?)

X [3:Q) + 9:@) + 5:.40)]

F 4:(@)Go(2) VsuGi2,54(2)

X [312(@) + 514 + F2() + 3u(2)]. (4.8)

The potentials can be completely eliminated from
the equations by using the following relations which
may be obtained with the help of (3.16)-(3.19):

[Va + VialGin@) = “)(Z) + T(”(Z)]Go(z)s (4.9)
VGiiu® = G:(GR). 4.10)

Therefore, using again the Faddeev equations
(3.17), as well as (3.23) one has

t12(z) Go(z) [V13 + V23]G123 (z)

tm(z)]

= [T2@) — t@1G:@) = TR @66,  (@.11)
42@)Go@)[Vis + V2ulGraa(?)
= [T20) — t@))G@) = T @66,  (4.12)
55Go(@) V34Gl2,34()
= [@1:(2) — £:()]Ge(®) = QL (RG(). (4.13)

The final four-body equations are obtained by
inserting (4.11)-(4.13) into (4.8). In general, they
read

3i:@) = tii(z) + TH@ + T30 + a4@)

T @G@[5:6) + 3.6 + 3.6)]

T @G @[3:46) + 3:@) + u@)
+ @si(z)Go(z)
X [34() + 3 + 5.6 + 3:()]. (4.14)

The operator 7%°(z) is defined to be [T} (z) —
4:;(2)). The operator G;;(2) is also defined to be
[@:;(2) — t:;(2)]. Given the two-body scattering
amplitudes ¢,;;(z), one can calculate these operators
by solving the three-body Faddeev equations and
computing the integrals involved in our formulas
(3.29).

Recalling that the four-body 3(z) operator is the
sum of all the 3;;(z) operators, one can check very
easily that the sum of the inhomogeneous terms of
the six equations yields correctly all the disconnected
parts of the four-body amplitude. The first iterated
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kernel is connected because in (4.14) 3;;(z) is not
coupled to itself.

V. CONCLUSIONS

This approach can in principle be generalized to
the N-body problem. The basic idea is to introduce
N(N — 1)/2 amplitudes 3;;(z), in analogy with
Eq. (3.6). In order to get an equation for I,;(z)
one has to insert in its definition the resolvent
identity between the full N-body Green’s function
G(2) and all the possible disconnected N-body
Green’s functions that contain the potential V,;.
These are known from the solutions for systems
with a smaller number of particles, and from gen-
eralizations of Eq. (3.26). By following this approach,
we are guaranteed that the potentials V,; will not
appear in the final equations.

We come then to the conclusion that, in the
absence of multiparticle forces, the multiparticle
T(z) operators are completely determined by the
two-body i;;(z) operators, with no reference to the
original potentials whatsoever. However, one must
bear in mind that in order to solve the Faddeev
equations for the three-body problem, or the equa-
tions we proposed for the four-body problem, it is
necessary to know the matrix elements of ¢;;(z) off
the energy shell. The experimental data determine
them only on the energy shell, so that all we can
measure is {p| £:;(2) [p’) = t.:(p, D’; 2) when p* =
p”> = 2. The only way of obtaining the off-shell
extension is through the Lippmann—Schwinger equa-
tion, which requires a knowledge of the potential.
Nevertheless, the Faddeev approach still has its
advantages in some cases. For example, if one is
dealing with singular potentials, the mathematical
difficulties associated with them need to be solved
only at the two-body level, since they are not
directly relevant to multiparticle calculations. If
the two-body scattering amplitudes appear to be
dominated by poles near the physical region—i.e.,
bound state or resonance poles—the problem of
their off-shell extension ean be overcome by using
phenomenological form factors. If one considers an
off-shell partial-wave amplitude ¢,(p, p’; ) the poles
will be poles in z. It is possible to prove that in
the neighborhood of a pole 2, the off-shell amplitude
is factorizable in its dependence upon the variables
p and p’.” Therefore, one can write

L(p, p';2) >~ 9.0 L) g: (D). (6.1

A simple form for ¢, (2) is just a pole term, 1/(z—z,),
in the case of a bound state. However, more com-
plicated expressions for resonance poles can be used
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if one wants to satisfy two-body unitarity. The func-
tions ¢:(p) are the so-called form factors; in the
case of bound-state poles they are given in terms
of the bound-state wavefunction by (»* — E,)¢(p),
E, being the binding energy. In the case of a reso-
nance, they are not so well defined, but in any case
we know their behavior at the origin (~ p’) and
at infinity (~ p'™®) for superpositions of Yukawa
potentials.® They also contain the left-hand cuts of
the partial-wave amplitudes,’ and merely express
the fact that the bound state and resonance poles
by which one is approximating the two-body am-
plitudes are not elementary systems but composite
ones with internal structure. All these requirements
can be used to construct phenomenological expres-
sions for the form factors. The Faddeev approach
is very useful in performing semiphenomenological
calculations to investigate the effects of two-body
resonances and bound states in multiparticle systems.

After this paper was written, we received a paper
by L. Rosenberg,'® which includes most of the con-
clusions presented here.
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APPENDIX

In order to prove Eq. (3.29), we have to use
Eq. (3.26) for G.;,.:(2) in the definition (3.19) of
the operator @;;(z). In so doing, we obtain

1
@ii(@) = Vi; + Vi %_/; 9::@)gu@ — 2') A2’V

1
+ Vi 5 | 0@ — ) a2V, (AD

Using the Lippmann—-Schwinger equations

Viigii(@) = f‘.,-(z’)gf,"")(z’),
gu — 2V Vi = g — )b — 2),
and
Viig:i@) Vi = 8:@) — Vi,
we obtain

Qi@ =V + L [ (@) — Vilgu@ — 2/) d’

f 8N g (@) g (2 — 2z — 2') dz’. (A2)

Alessandnm and R. L. Omnes, Phys. Rev. 139;
B167 (1965)
10 I.. Rosenberg, Phys. Rev. 140, B217 (1965).
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Using next the definitions of #.:(2),
gule — 2) = g — 2)
+ g8 — 2l — 295" — #),
Equation (A2) becomes

V,-i[l - ‘2%1'../; gk,(z - zl) dz,]

+ o [ L@6 - )

Q:i(2) =

+ 50 [ )06 = D =) e~ 2) a2

+ 5= f Li@)gs P @) & — ) lule — ) d2'. (A3)

By taking the contour ¢ of integration as enclosing
the singularities of g.;(z — 2’) and ¢{*’(z — 2’) in
a clockwise way, the first two terms of the right-hand
side can be simplified. Recalling that

952 + ie) — g (e — 1¢) = —2mt 8z — RS,
one gets
5 [ @006 = ) d = 1. (A9

The bracket multiplying the potential V,; in
Eq. (A3) can be shown to vanish because of the
completeness relation for the eigenstates of the
Hamiltonian k,; = A8 4 V. We know that the
Green’s function g,;(z) can be represented as

o) = S LKLl 7 gp WEKIE

where Ia[/,.) are the discrete eigenstates of h,; with
binding energy (—E,), and |¢(E)) are these belong-
ing to the continuum. Therefore

1
'2_'111.‘/: g“(z -_ Z,) dz'

1
= "5—7”- . gu(w) dw

2 vl + [ 4B b@xe@)l

where the contour ¢’ encloses the spectrum of g;;(w)
in a clockwise way. Therefore, the completeness of
the eigenstates of h;;(2) guarantees that

1— f gule — 2) d2 = 0. (A6)

Using (A4) and (A6), one can reduce Eq. (A3) to
the Eq. (3.28) of the text.
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‘The problem of radiation transport is formulated in terms of a transfer matrix H whichisa 2 X 2
matrix of operators. H is simply related to the more intuitive transmission and reflection operators
T and R. An explicit expression for H is derived in slab geometry for radiation distributions that
depend on the angle with the slab normal and on energy. H for a multilayer slab is the matrix product
of the transfer matrices for the individual layers. A formal expression for H for a homogeneous slab of
finite thickness is found in terms of the T and R appropriate to an infinitesimally thin slab. These in
turn are related to the single-scattering distribution and therefore ean be computed from the miero-
scopic cross section, For purposes of computation, finite mairix representations for the operators
must be introduced corresponding to the finite vectors which approximate the distributions. Expan-~
sions of the distributions in the cosine of the angle and group representations in energy were chosen
in the present work. Some numerical results are presented for gamma rays on aluminum,
The extension to problems with internal sources and to nonplanar geometries is outlined.

I. INTRODUCTION

N many physical problems one is interested in
inputs to and outputs from a linear system, with
the system itself treated as a black box. It has proved
useful to look at such problems in terms of scattering
or transfer matrices. Matrix methods have been
used in the study of transmission lines, wave guides,
nuclear scattering, elementary particles, crystal lat-
tice dynamics, acoustics, and other types of prob-
lems. The purpose of this article is to formulate such
an approach and to apply it to the detailed calcula-
tion of the penetration of neutrons and gamma rays
in various media. Some of the ideas, however, may
be useful in treating other kinds of physical systems.
The prototype of such systems can be taken as the
transmission line, which can sustain waves propagat-
ing in either direction. These waves are partially
reflected and partially transmitted by a circuit ele-
ment; the over-all effect can be described by a
scattering matrix giving the outputs in both direc-
tions in terms of the inputs. Alternatively, the ele-
ment may be described by a transfer matrix giving
the input and output on one side in terms of those
on the other. The latter point of view is the one
adopted in this paper. It leads to a convenient
description of the effect of an array or cascade of

* This work was supported in part bK the U. 8. Air Force
under contracts AF 33(616)-3616 and AF 33(616)-6081 and
by the U. 8. Army Ballistic Research Laboratories under
contract DA-30-069-AMC-96(R).

1 Work done in large part while at TRG, Incorporated.

1 A subsidiary of Control Data Corporation.

elements in terms of the effects of the individual
elements. Redheffer' has given an extensive discus-
sion of the relation between the two views. He
considers transmission lines primarily but also dis-
cusses the application of both approaches to a variety
of other physical systems.

More specifically, the transfer matrix approach
deseribed in Sec. II below has proved useful nof
only for transmission lines'"® but for electromagnetic
radiation in an array of dielectrics.’ It has also been
applied to the transverse vibration of a bar® and
propagation in a bifurcated waveguide.® The latter
systems have both propagating and evanescent
modes in each direction. More closely related to
the present work is that of Bobrowsky® and of
Jones.” Bobrowsky® recognized that the transmis-
sion of neutrons and gamma rays through a sue-
cession of slabs could be found as a product of
transfer matrices. Jones” was concerned with the
transmission of polarized light through an array
of optically active elements. The relation of these
papers to the present work is discussed in more
detail in See. X1.

There is also a generie relation to the invariance

 R. Redheffer, J. Math. Phys. (Cambridge) 41, 1 (1962),

2 H. E. Rowe, Bell Sfrstem Tech. J. 43, 261 (1964).

* R. Aronson, unpublished.

¢ D, Yarmush, TRG-142-TN-64-10 (TRG, Incorporated),
unpublished.

8 J. R. Pace and R. Mittra, in Microwave Research Institute
Syngzosia Series (Polytechnic Press, Brooklyn, 1964), Vol. 14,

17

P A" R. Bobrowsky, NACA Technical Note 1712 (1948).
7 R. C. Jomes, J. Opt. Soc. Am. 46, 126 (1956) and earlier
references given there.
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F1q. 1, Schematic single-layer geometry.

approach formulated and applied by Ambartsumian®
and by Chandrasekhar® to astrophysical problems
and by Bellman, Kalaba, and Wing'® to neutron
transport.

The problem of neutron and gamma ray transport
is more complicated than the others mentioned above
because the elements of the transfer matrix are in
general integral operators in several variables.

We will be concerned with determining the dis-
tribution in direction and energy of transmitted and
reflected neutron and gamma radiation in terms of
the incident distribution. The transfer matrix
method has been used for machine calculations on
gamma, rays, and so the exposition deals with gamma
rays rather than neutrons when it is necessary to
specialize. Extensive numerical results for transmis-
sion and reflection of gamma rays incident on alumi-
num slabs are given elsewhere."

In Sec. II we introduce the concept of transfer
matrices. In Secs. III-V expressions are given for
the transfer matrices and for the transmission and
reflection operators for finite slabs in terms of the
differential cross sections. Section VI deals with the
introduction of finite matrix representations in direc-
tion and energy. The explicit matrix algebra for
computing the matrices of interest is given in See.
VII. Section VIII discusses some aspects of the
approximation problem. Numerical results for some
small problems are given in See. IX. The method is
evaluated for large scale computation in See. X and
the general conclusions are stated in Sec. XI.

Appendices A-D refer to special aspects of the
general discussion in the text. Appendix E discusses
the relation to the P, method, and application to
general geometries is outlined in Appendix F.

II. GENERAL FORMULATION

Consider a slab of material, which need not be
homogeneous. Let the distribution of radiation in-

8 V. A. Ambartsumian, Soviet Astron-AJ 19, 30 (1942);
Dokl. Akad. Nauk SSSR 38, 229 (1943).

? 8. Chandrasenkhar, Radiative Transfer (Dover Publica-
tions, Inc., New York, 1960).

10 R. Bellman, R. Kalaba, and G. M. Wing, J. Math. Phys.
1, 280 (1960); G. M. Wing, An Introduction to Transport
Theory (John Wiley & Sons, Inc., New York, 1962).
( 1101)). Yarmush, § . Zell, and R. Aronson, WADC-TR-59-772
1960).
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cident from the left be denoted by xi, and that from
the right by x4. These distributions are in general
functions of direction, energy, position of incidence,
and possibly other variables. They may represent
either amplitudes or intensities, depending on the
problem. Let the distribution emerging on the right
be designated by x{ and that on the left by x..
The situation is shown symbolically in Fig. 1.

It is assumed that the problem is linear, that is,
that the outputs are linearly related to the inputs.
Assuming no fixed sources in the interior, one can
express the linear property by the relations

xi = T + R*x;,
xz = Rxa + T*xs.

T and R are, respectively, transmission and re-
flection operators for radiation incident from the
left. T* and R* are the operators for radiation
incident from the right. T = T* and R = R* only
if the slab is symmetric.

Equations (1) can be solved for x{ and x} to give

in matrix form
X; X2

where H is a 2 X 2 matrix of operators:

@

— RAJ* *TT*
H=[T R*U*R RU], @)
—U*R U+
with
U=T"7
4
U* = (T¥™.

The form (2) leads immediately to a composition
law for H-matrices. Consider a two-layer configura-
tion, such as is shown in Fig. 2.

One has
144 ’
[Xl ] = H, [XI
x5 X5

where H, and H, are, respectively, the H-matrices
for slabs 1 and 2. If the H-matrix for the entire
configuration is denoted by H, then

—_ Hng X1

H

Xz

H = HzHl . (5)

Fi1a. 2. Schematic two-layer geometry.
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The composition of n layers evidently gives
H =H, --- HH,. (6)

From Eq. (5) and the explicit form (3) for H,
one derives the results of Peebles and Plesset,'* with
I the unit operator:

T = Tyl — R%R,)™'T, = T, Z}) (R%R,)"T,, Q)
R =R, + ™I - R2R='i)-lR2T1

= R1 + T*iRz(I - R*{Rz)_lTl

= R, + T*R, 2. (R*R)"T,. ®

n=0

Each term of the series expansions in (7) and (8)
has a physical interpretation in terms of reflections
from and transmission through the two slabs. For
instance, T*R.(R%R,)"T, represents transmission
through slab 1, n pairs of reflections back and forth
at the interface, a final reflection from slab 2, and
transmission back through slab 1.

While these results have been stated for slabs for
definiteness, no use was made in the derivation of
any slab properties. Equations (3) and (6) hold for
any configuration whose boundary can be divided
Into two parts. Figures 3 (a)-(c) show typical cross
sections of three such configurations.

Figure 3(a) represents a region with an irregular
boundary naturally divided into two parts. Figure
3(b) represents a region which has an inside and an
outside boundary rather than “right’’ and ‘left.”
In Fig. 3(c) the boundary surface is divided arbi-
trarily into two parts. One part is indicated in the
figure by the curve going clockwise from A to B
and the other by the curve going counterclockwise
from 4 to B. One part of the boundary is arbitrarily
designated the right-hand face and the other part
is then the left-hand face.'®

If there are sources in the medium, let

Q. = flux, due to sources in interior, emerging
from right-hand face;

Q- = flux, due to sources in interior, emerging
from left-hand face.

Then Eq. (2) becomes

® = Ho } Qr (9)

where

( 1 ? H. Peebles and M. 8. Plesset, Phys. Rev. 81, 430
1951).

13 Precautions are necessary if the surfaces are concave or
re-entrant. See the discussion in Appendix F.

TRANSPORT

X1 X
X X5
(a)
X
Xl
(b)
X1
(c)

223
X3
X1
X2

F1e. 3(a) Two-surfaced configuration; (b) hollow configura-
tion; (c) one-surfaced configuration.

@ = t‘ , o=t (10)
2 Oé
and
Q= [Q+ TR (1)
—U*Q_

One must distinguish between true sources, de-
scribed by Q, and multiplication or gain, which is
taken into account in H.

1. DETERMINATION OF H FOR
HOMOGENEOUS SLABS

Consider radiation incident uniformly over the
surface of a slab. If the slab is composed of homo-
geneous layers, then the H-matrix for the composite
is found by applying the relation (6). If the prop-
erties of the slab material depend continuously on
the depth into the slab, the H-matrix can be found
to any desired degree of accuracy by breaking the
slab up into laminas thin enough to be regarded as
homogeneous. Thus it will be sufficient to determine
H for homogeneous layers.

For a homogeneous slab, T = T* and R = R*,
To first order in the thickness ¢,

TW) =1 —at + +- (12a)
Rt) =6t+ -+, (12b)

where I is the unit operator. « and 3 are operators
related to the differential cross sections. The nega-
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tive sign is chosen for the first-order term in equa-
tion (12a) so that the elements of e will be non-
negative for pure absorption.

Since we have assumed that the slab is homogene-
ous, H is a function of the thickness only. The com-
position law (6) gives in this case

H(t, + &) = H{)H(E,) = H()H(®E,).
Since
H=I for t=0,
H must have the form
H(f) = exp — Wi, @13)

where W is a 2 X 2 matrix of operators independent
of ¢. One finds by expanding expression (3) for H
to first order in ¢, using equations (12a, b), that

S
8 —«

Formal series expansions in powers of { can now
be found for the elements of H. However, conver-
gence is generally poor, even for moderate values
of t. The series solution is discussed in Appendix A.

It is illuminating and computationally useful to
introduce diagonalized forms of H and W. Diag-
onalizing W diagonalizes H also. If diagonalized
matrices are denoted by bars and S is the diagonal-
izing matrix for W, then

H = S7'(exp — W1)S
= S87'(exp — SWS™')S.  (15)

Using Eq. (15) to compute H has a number of
advantages, which are related to the fact that W
and S are independent of the slab thickness but de-
pend on the medium only, i.e., on the cross sections.

We will assume throughout that W can be diago-
nalized. If a cross section minimum occurs in the
range of energies of interest, there is some question
as to when W can be diagonalized. This is just the
problem of the conditions under which eigendis-
tributions of W exist. This problem has been con-
sidered in certain special cases,’* but there is no
general treatment. We will not pursue it further
here, since in the ultimate reduction to finite ma-
trices, one can always diagonalize an approximate W
obtained by perturbing the eigenvalues somewhat.
In any case, in principle one does not need to diago-

(14)

1 For an infinite medium, the isotropic scattering problem
has been discussed by K. M. Case, Ann. Phys. (N.Y.) 9, 1
(1960). This treatment has been extended to anisotropic
scattering by F. Shure and M. Natelson, Ann. Phys. (N.Y.)

26, 274 (1964).
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nalize W in order to compute H (e.g., by power
series).

The diagonalization of W can be reduced to that
of the operator A = ¢85, where

é=a+ 8, (16a)

$=a—0. (16b)
One can write

A = X"AX, (17)

where A is diagonal. Then defining A by the operator
relation®®

A =AY,
one finds
w-[r © } a8
0 —A
and'®
s =% B, B—] , (192)
B_ B.
s=1 [C+ C-] (19b)
C. C,
with
B, = X + 8XA7Y, (20a)
C.=X"1+A"X. (20b)

These expressions for W, S, and S™ can be verified
directly.

IV. DETERMINATION OF T AND R

With the above expressions for W and S, one
finds on equating expressions (3) and (15) for H that

U = 1(B_¢e™C_ + B.e*C.), (21a)
RU = }(B,e"4'C. 4+ B_é*'C.). (21b)
Then
T=U" (22a)
and
R = (RU)T. (22b)

For purposes of numerical calculation, the various
operators must be represented by matrices. The

16 Those eigenvalues of A} with positive real part are
assigned to A.

18 Note that S is defined in the same sense as X%, not
as X. That is, A = X'AX while W = SWS-1
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matrix formulas (212)-(22b) for T and R are not
suited for numerical calculations as they stand be-
cause the significant information in the elements
of the matrix U is carried in the least-significant
digits and can be lost in roundoff error. In physical
terms, it is the most slowly attenuating modes in an
attenuating medium which dominate the transmis-
sion for moderately thick slabs. Thus the smallest
rather than the largest eigenvalue of A determines
the attenuation asymptotically. One would there-
fore like to obtain expressions for T and R which
avoid the explicit appearance of the increasing ex-
ponential e*’, It is easily verified that if one defines

D = C/}, (23a)
F = C.D, (23b)

then
T = 4De™™(B, + B_eMFe 4™,  (24a)

R = (B- + B,e Fe 2B, + B_e A Fe44),
(24b)

This set of formulas is algebraically equivalent to
Eqgs. (212)-(22b) and has the desired properties.
An alternative way of modifying formulas (21a)-
(22b) to avoid the numerical difficulty just dis-
cussed is described in Appendix B.

V. INTEGRAL REPRESENTATION OF « AND §
FOR RADIATION TRANSPORT

The foregoing discussion is quite general, with
application to various types of physical problems.
We now specialize to the transport of radiation, with
polarization effects neglected. The variables will be

z = depth in slab;
w = cosine of angle between direction of radiation
and normal to slab;
¥V = function of energy, to be specified later.
The transport equation can be written'”
0% (r,0, V
0 2@V v)az, 0, V)
1 27 .
+n [ [ av [ a8 ot-tr; v, v)
-1 0
X &@,0, V), —-1<w<l, (25)
where

&z, w, V) = flux at (z, w, V) per unit V per
unit solid angle;

17 Equation (25) is written for a single species of scatterer.
If there are several such species, n 1s replaced by X o,
where the index ¢ refers to the ith species. The necessary
generalization of the ensuing results is straightforward.
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u(V) = total macroscopic cross section
at V;
£’ = unit vector in direction of particle
velocity before scattering;
$ = unit vector in direction of particle
velocity after scattering;
¢ = change of azimuth on scattering;
n = density of scatterers;
o(Q2-Q'; V, V') = differential cross section for scat-

tering from (V’, &) to (V, &) per
unit V and per unit solid angle
at Q.

The transmission and reflection operators for this
problem, as well as « and 8, can be written as in-
tegral operators. Differentiating Eq. (1) and using
Egs. (12a, b), or alternatively differentiating Eq.
(13) and using Eqgs. (2) and (14), one finds

Xm/dx = —ox; + Bz, dXz/dz = —@a + axa.

More explicitly, since & is to be identified with
x1 for o > 0 and x, for w < 0, the first equation
becomes™®

a® (.’27, @, V)
dx

1
- - f av’ f & Ko(w, '3 V, V)0, o, V')
0

0
av' [ do Ky, —a'; V, V'
+ [av [ aw Ko, —'3 7, V)
X &z, o', V), ©>0. (26)

K. (o, «; V, V') and Ko, o’; V, V') are, respec-
tively, the kernels of @ and 8. The equation involving
dx./dx gives an identical equation for & with all
directions reversed, i.e., w —» —o, ' — —d'.

The scattering geometry is represented by the
spherical triangle in Fig. 4. i represents a unit vector

in the z direction. The law of cosines gives
0-Q = cos ¢ = w'

+ 10— DA —®tess. @D

Fic. 4. Scattering geometry.

18 The convention that w and o’ are always positive will
be used. This means that the direction for incident radiation
is measured with respect to the inward normal on the incident
face, and that after scattering the direction is measured with
respect to the outward normal on the exit face.
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Substituting this in Eq. (25), one finds by com-

parison with Eq. (26) that

K (w,"; V, V)

- %{,‘(V)a(w — )V — V)
—-n f“ do o(ww’
+ 1 — A — 0 cosd; V, V’)} (28a)

2
Ky, o V, V) =2 [ d o(—auf
0

+ 1 — A - cosg; V, V).  (28b)

Equations (28a, b) hold for w, @’ > 0 according
to our convention.

There are the two cases of particular interest for
which K, and K; can be found easily.

Case 1. Isotropic scattering, ome-velocity problem.

In this case the variable V does not appear.
Ka(w, ') = (1/0){pdle — ') — (no,/2)},  (29a)
Ky(w, o) = (1/w)(no./2). (29D)

o, i3 the total microscopic scattering cross section.

Case 2. Elastic scattering of neulrons and gamma
Tays.

For elastic collisions of neutrons and gamma rays

there is a relation of the form
cos ¢ =y(V — V), (30)

i.e., the scattering angle is a function of V. — V.
In neutron problems, V is identified with the
lethargy. For a scatterer of atomic weight A4,
WV — V') = cosh {(V — V)
— A sinh {(V — V). (31)

For gamma rays, V is identified with the wave-
length. If V is given in compton units,

yV-V)=1—-(V =V, (32)
Whatever the radiation, the differential cross sec-
tion per unit V is
oV, V) = fa(s‘z-fz'; Vv, V) d
[-1<y(V —-V) < 1]

= (0 otherwise.
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The angle-energy correlation (30) implies that
o(R-Q;V, V)
= ¢(V, V")é[cos ¢ — v(V — V")]/2x.

Using (27), introducing cos ¥ instead of ¢ as the
integration variable, and setting @ = cos 6, o’ =
cos ¢, one has for the integral in Eqgs. (28)

33)

2%
db o(G- 873 V5 V') = "—(%-l’l) Rei, (39)

where
8" = [eos (6 — &) — v(V — V)]
X [v(V = V') — cos (6 + 6]
=1—w —w?— 7+ 2uw'y. (35)

S is symmetric in w, o', and . It is real when the
triangular relations

60— 0| <y <6+ 0,
[0 — Y| <0 <04+ 9,100 —¢| <0<+

are obeyed.

VL. INTRODUCTION OF MATRIX
REPRESENTATION

So far everything has been exact. We must now
choose a discrete representation in angle and energy
in order to deal with matrices rather than integral
operators. The choice is by no means unique. We
will use a group representation in energy and an
angular expansion in a complete set of functions
F*(w) of w. Consider first the angular representation.
Expand the flux separately in each hemisphere as'®

Ha) = 30 6w

n=0

(36)

The coeflicients ¢" may be combined into a vector ¢.
We now wish to obtain the elements a™ of the
matrix e, which is the representation of the operator
« using the basis F"(w). To do this, we determine the
elements of the vector ed. In terms of the integral
kernel K,
1
o3 = [ Ko, )@ d’. (3D
To determine the expansion of the left side of
(37) for an arbitrary weight function g(w), we mul-
tiply the equation by g(w)F*(w) and integrate over
w, obtaining

19 We will reserve superscripts for angular indices, sub-
scripts for energy indices, except as noted.
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[ s@P @) do

= T [ s@P O do

= T = (e, (38)

where

& = fo | HO PO F(@) do. (309)

If we define
1 1
y" = f 9(@)F(w) dw f do’ K o(w, 0" )F(w), (39b)
0 0

then from (37), the elements of « can be computed
from the matrix relation

(40)

«=zy.

If the F* are orthonormal with respect to the weight
function g(w), 2™ = 8m; 50 @ = y.

Because K, and K; contain factors ™, all the
elements of y do not exist unless g(w)F*(w) — 0
for all k¥ as w — 0. To avoid this difficulty, one
multiplies by « before integrating over « in the
equations above.” Then using (28a) and (34), one
finds in analogy with (38),

T W) = B V)
> fo AV oV, V)

X fo ' H ) do fo ' FW)

1

X Re e 7 (V = V]

(41)
where
¢ = fo ' oge) @) F™(w) ds. (42)

Now assume that F™ and ¢ can be expanded in
power series in w:

F(w) = ; q"e", 43)
glw) = ; gi“"x (44)

and define

20 One can avoid this problem by approximating w™! as a
polynomial in w, but this leads to complex eigenvalues for the
resulting approximation to W. There i1s a more complete dis-
cussion in Ref. 11.
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D) = o) = [ [ oo

1

—_ ’
mS(w, w’: 'Y) oo du’.

X Re (45)

The functions D™ are evaluated in Appendix C.
Defining a matrix G by
Gi i — gi -",

=0,

s g
7=t (46)
i<i,

and matrices q and § those (m, n) elements are,
respectively, ¢™" and ¢"", we have formally the
matrix equation

ead(V) = u(V)z$(V)
—n f dv’ o(V, V)qGDW(V — V)]ap(V"). (47)

If the F™ are the full-range Legendre polynomials
and g(w) = 1, then the matrix D = ¢qD{§ can be
computed directly (Appendix D).

Note that the physics enters only through u(V),
o(V, V'), and the argument v(V — V') of D.

An expression analogous to (47) holds for §:

e3o(V) = n fo "4V’ oV, V)G

X DV — VNae(V"),  (48)

where
0 1
mn _ (—1\" ;7 m i_
(DY™(y) = (=1) f_ldwfo du "™ Re ==+ (49)
Because of the symmetry of S in v and o,

(D™@) = D™(—). (50)

With F™ of the form (43) and g of the form (44), one
has from (39a) and (42)

z = qGhg 1)
and
e = qGhg, (52)
where h is the Hilbert matrix®, with elements
hiy=1/G+ i+ 1) (53)
and
h-ii =1/t + 37+ 2). (54)

In view of (51) and (52), a factor qG appears on
the left of every term in (47) and (48), and so one

2 I, R. Savage and E. Lukacs in Contributions to the Solu-
tion of Systems of Linear Equations and the Determination of
Eigenvalues, edited by O. Taussky, g 105, National Bureau
of Standards, Applieg Mathematics Series No. 39 (1954).
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can multiply from the left by (q9G)~', which in
general exists, to get expressions for « and 8 in
which G does not appear. One expects this to be so,
a priori, since in effect all complete sets of poly-
nomials are equivalent.

The cancelation of the common factor qG is no
longer possible when the expansion is truncated. To
determine the elements of the finite matrix ap-
proximations «’ and 8’ to « and § corresponding to
arbitrary truncated expansions of the form yy(w) =
>, a*F*(w), we require that for the kth element
of the vector e'yy, the integral

1
[ 0@ leva)* = (@) do
be a minimum, k = 0, 1, ... , N, for the arbitrary
weight function g(w). It can be proved that this
least squares criterion gives o’ = yey and similarly,
8’ = xBy. Here yAy denotes the matrix obtained
by retaining only the first (M + 1) rowsand (N + 1)
columns® of a larger matrix A.

The truncated scattering term in (47) or (48)
then involves a matrix of the form 5(qGD§)y. This
is not in general equal t0* yqyGyDyy. If g(w)
is restricted to be a polynomial of order K, then by
reference to the defining Eq. (46) for G, one sees
that

»GDq)y = ¥qvGu.xDuln, (55)
vZx = nQyGyixhaly, (56)
Ny = NqNGN+KﬁNq1V' (67

That is, to represent g(w), one needs the rectangular
matrix yGy+x. A rectangular matrix has no inverse,
80 that yGy.x cannot be cancelled from (47) and
(48), and thus the approximations to @ and § depend
on the choice of a weight function.

Equations (56) and (57) may give ~zy and yey
as small differences of large numbers, so that extreme
care must be taken in computation. The infinite-
order matrix e has no inverse if g(0) > 0. However,
~€x has an inverse for most forms of g(w). Certain
elements of the inverse increase sufficiently rapidly
with increasing N, though, so that there are prob-
lems of obtaining sufficient precision in the com-
putation of the inverse even when N is as small as
5 or 6.

Since in most problems of interest the radiation
never gains energy in a collision, the « and 8 ma-

2 It is assumed that the functions of interest are best ex-
panded in the first N 4 1 of the F%, i.e., those with0 < %k < N,
. 2 Note that adjacent duplicate subscripts are suppressed
in a product.
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trices (and therefore, it will be shown, all relevant
matrices) are triangular in structure in these energy
ranges, having no nonvanishing elements above the
main energy diagonal. This simplification is ob-
viously not possible for thermal neutrons. The ele-
ments in energy are of course matrices in the angular
variable. For matrices the size of W or H, the ele-
ments in the angular variable are themselves 2 X 2
matrices in the direction index, which can take on
two values, “forward” and “backward”.

Let the ith energy group range from V,_, to V,.
Equation (47) becomes in an energy group formula-
tion, when the angular expansion is truncated after
n = N, and N 4 K is written as M,

vy’

(e )y = 8u- NzNﬁ AV’ w(VONE(V)]x

1’=1
v’ Vi

~ G [ av [
Vi‘-1 Vi-1

X uDIy(V — V) lunlfe (V)] (58)

where we have taken for the vector $, the total
flux vector in the Ith group, i.e.,

av e(V, V)

14
s=[ smar. (59)
-1
f,.(V) is a diagonal matrix whose elements are the
normalized coefficients in the expansion in angle
for the flux, that is,

£ (W™ = ["(V)/$118am;  Via <V < Voo

It serves as a shape function. One approximates it
in the usual way by assuming some reasonable
distribution of flux within the group. Then from (58)
and from a similar relation for yeBy one computes
~xoy and yBy for 1 < I <1 < L, where L is the num-
ber of energy groups, by multiplying on the left
by (vex)™'. In practice one would probably choose
the same shape for each element of f,.

VIIL. RECURSIVE DIAGONALIZATION IN ENERGY

The block-triangular structure in energy of the
« and B matrices permits simplification in the diago-
nalization of A = g8 [Egs. (16)-(20)]. The block-
triangular property of a can be written ;. = 0
for’ > 1

The sum or product of two block-triangular ma-
trices is also block-triangular in the same way, so
A, = 0for I’ > I. Let the mth column of A;;. be
denoted by A;7. and the mth row by A7;.. Assume
that the blocks on the diagonal are diagonalized.
The set of eigenvalues y7 of A is just the collection
of sets of eigenvalues of the blocks on the diagonal.
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Assume further® that none of the eigenvalues 775
is equal to 47 when I’ 5 [. The diagonalization con-
dition (17) gives

1-1
EAuX':z': = (’Y"z':Iu - An)X'z"z':,

k=1

(60)

where I,; is a unit matrix in the appropriate angular
subspace. For [ = 1, the left-hand side vanishes.
The factor in parentheses is nonsingular when I’ # [,
by hypothesis. Thus X;;, = 0 for I’ > 1. By induc-
tion, one has from (60) that X,;, = O for I/ > I, so
X too is block-triangular. Further, if X,;. is known
for £ < [, then X;;. is computed from

131
X5 =@ - Ap™ kE AX0. (6D)
-1

If there is an upper limit to the change in V that
can oceur in a single collision, as is often the case,
then all the blocks of @ and 3 below a certain diago-
nal also vanish. In that case the summation in Eq.
(61) is restricted.

As a first step in the diagonalization, one must
diagonalize the blocks on the energy diagonal. But
this problem is one of diagonalizing L matrices of
order (N + 1) rather than the more difficult original
one of diagonalizing one matrix of order L(N + 1).

In a procedure similar to the diagonalization, the
inverse B of an arbitrary block-triangular matrix A
can be computed recursively. B has the same block-
triangular structure as A. Thus B;; = O forl > 1
and B;; = A7} Further,

-1
Bn' = Bqu' - Bu k; AuBu'- (62)

B,: can be computed from (62) once B;;. is known
fork < 1.

VIOI. REMARKS ON EIGENVALUES AND
EIGENDISTRIBUTIONS

For simplicity in both computation and interpreta-
tion one would like to use an approximation in
which W has real eigenvalues and eigenvectors.
One can show™ that if g(w) = 1, the eigenvalues of
the approximate A defined as yéx8y are real in a

2 One can show, by an argument paralleling the demon-~
stration that the eigenvalues of W are real, that two eigen-
values corresponding to a single energy group will be different.
This assures, incidentally, that A and therefore W can be
diagonalized. In case of accidental degeneracy involving two
eigenvalues corresponding to different energy groups I and 1,
one of the eigenvalues can be perturbed somewhat.

2 The argument, given in Ref. 11, is not rigorous, but
it seems quite convincing.
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nonregenerating medium.’® Therefore the eigen-
values of the corresponding approximate W are
either real or pure imaginary. These W eigenvalues
seem, in fact, to be real in an absorbing medium.
This is certainly true in the one-velocity case and
also in a multigroup situation with very narrow
group widths.*”

As observed previously,” there are other methods
of approximating A and W which produce complex
eigenvalues even for an absorbing medium.

The eigendistributions (columns of B, and B.)
have considerable theoretical interest, even though
they are artifaets in that they depend on the energy
grouping. By examining the corresponding eigen-
values, one can see how many eigendistributions
will contribute significantly to the transmitted radia-
tion at a given thickness. In many cases only the
fundamental eigendistribution will be important for
large thicknesses. If the representation is such that
the fundamental eigendistribution is similar to the
true asymptotic distribution, the results will be good
out to very large distances.

IX. SOME NUMERICAL INVESTIGATIONS

Calculations on the IBM-704 were carried out
for gamma rays, for which ¥V = E™' in units of
mc®. The material was aluminum. In the test runs
to be discussed, the energy grouping was: group 1,
2.75-2.50 MeV; group 2, 2.50-1.75 MeV; group 3,
1.75-1.00 MeV.

In all the computations each f; was approximated
by f, = f;1. To obtain some idea of the sensitivity
of @ and B to the choice of f;, two forms were used:
M = ¢, and @ = ¢,V?, where ¢, is independent
of V. The ratios of corresponding elements of the
« -matrices for the two forms of f, were equal to
within about one percent within each block (i.e.,
the ratio was nearly independent of angular indices
for each pair of energy indices), but varied more
significantly from block to block. The ratios «{* /"
of corresponding elements of «{” and e{’, where
@, is the scattering part of a, are given in Table I.

The effect of uncertainties in f; can be minimized
by taking the intervals as small as possible. For the
most accurate results, f, would be determined itera-
tively, using the output of each stage to determine
the form of f, at the next.

Tables II and III show total transmitted fluxes
for 20 and 100 cm of aluminum, respectively, for

26 Thus the exact A obtained by letting N go to infinity
is seen to have real eigenvalues. .

27 This is shown by considering the problem of diffusion

over the sphere of directions, with the diffusion coefficient
depending on position.
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TasLe I. Ratios of corresponding
elements: [“ ¢ )]mn/[a 24 )}mru

Incident group

Exit

group 1 2 3
1 1.03
2 1.00 1.10
3 1.00 0.96 1.13

isotropic incidence.”® The transmission matrix re-
sults are given for either three or five energy groups,
and either three or seven angular terms of a double-
P, representation.” For the five-group calculation,
the group from 1.75-2.50 MeV was broken into
subgroups. The last two columns contain Monte
Carlo results®® for comparison. In all cases the nor-
malization is to unit incident flux. The results are
total transmitted flux in each energy group, inte-
grated over direction.

More detailed results for aluminum slabs are
given elsewhere.'!

A basic problem is to determine how many terms
are needed in the angular expansion. The number
required depends not only on the type of angular
expansion functions but on the width of the energy
groups. If the groups are narrow, each eigendistri-
bution will be sharply peaked in angle in its top
group and many angular basis functions must be
used to represent the peak adequately.

There are several reasons to believe that out at
least to ten or 15 mean free paths, it is sufficient to
take about seven terms (through P,) in a double-P,
expansion for the energy grouping used in the sample

TabLE II. Transmission through 20 em of aluminum,
in units of 10~2 photons ecm™% sec™1. Isotropically
incident flux normalized to 1 photon cm™2sec™.

Transfer matrix

Energy groups 3 3 5 Adjusted
Angle terms 3 7 3 Monte Carlo
Unscattered 3.809 3.833 3.809 3.75\ 4.04
2.75-2.50 0.29
2.50-2.25 0.639 0.63
2.25-2.00 1.970 1.971 0.651} 1.966 0.78} 2.11
2.00-1.75 0.676 0.70
1.75-1.00 2.456 2.464 2.456 2.49
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TasLe II1. Transmission through 100 em of aluminum,
in units of 10~¢ photons cm~2 sec™L. Isotropically
incident flux normalized to 1 photon ¢m—2 sec™t.

Transfer matrix

Ener; oups 3 5 Adjusted
Anglye: gt;rmg 7 3 Monte Carlo
Unscattered 4.169 3.864 3.83} 5.31

2.75-2.50 1.48
2.50-2.25 2.263 3.10
2.25-2.00 7.818 2.431y 7.348 3.29; 9.75
2.00-1.75 2.654 3.36
1.75-1.00 11.116 10.798 16.88

problems. Seven terms were originally used because
of programing limitations.

One argument comes from examining the eigendis-
tributions, which correspond to the columns of B,.
The most peaked of all the angular distributions
appearing in any eigendistribution is expected to
be that in the fundamental (i.e., least attenuated)
distribution for radiation in the highest energy group.
Table IV shows the fundamental eigendistribution
for the sample problem, broken up by l-value, for
a double-P, calculation. The I = 1 column is the
most significant, as just indicated. The last element
in the ! = 1 column is seen to be half the preceding
one. Now it can be shown that for a P, expansion®
the elements in the top energy group, when arranged
in order of increasing angular index, decrease fac-
torially when the index is sufficiently large. It seems
reasonable to assume that the sample problem shows
the beginning of such a decrease. Another argument
is that extensive calculations by the moments
method®® showed®® that it was sufficient to go to

TasLe IV. Fundamental eigendistribution for
aluminum. Initial energy group 2.50-2.75 MeV
(arbitrary normalization).

Energy group !

Angle

index n 1 2 3
0 0.21 0.91 1.28
1 0.59 2.38 2.54
2 0.87 3.02 1.85
3 1.00 2.83 0.65
4 0.96 2.14 0.00
5 0.75 1.33 —0.13
6 0.40 0.67 0.01

28 The transfer matrix calculations inadvertently used an
erroneous conversion factor which produced a scattering cross
section about 5 percent too low, though the total cross section
was correct. It is not now possible to repeat the calculation
with corrected data, but a corrected computation would
presumably improve the agreement in Tables II and III.

%% The basis functions in each hemisphere are P,(20 — 1).

30 H. Steinberg and R. Aronson, WADC-TR-59-771 (1959).

3 See, for instance, B. Davison, Neutron Transport
Theory (Oxford University Press, New York, 1958).

2 J. Fano, L. V. Spencer, and M. J. Berger, ‘Penetration
and Diffusion of X-Rays,” in Encyclopedia of Physics, Part 11,
edited by S. Fligge (Springer-Verlag, Berlin, 1959), Vol.
XXXVIII. .

3 H. Goldstein, Fundamental Aspects of Reactor Shielding
(l‘ggéi)ison-Wesley Publishing Company, Inc., Reading, Mass.,
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Pg to get a good representation of total flux and cur-
rent out to 15 mean free paths. Further, Tables II
and III show reasonable agreement of a seven-angle-
term calculation with Monte Carlo calculations,
especially in the upper energy group.

None of these arguments is conclusive, but to-
gether they make it plausible that in problems
similar to those discussed here, about seven angular
terms should suffice.

X. EVALUATION AS A COMPUTATIONAL METHOD

The angle and energy representations in the cal-
culations done so far were chosen primarily for con-
venience. Nevertheless, the results indicate that the
method is perfectly feasible for large-scale computa-
tion and that a proper choice of representation can
be expected to produce quite accurate values for
angular and energy spectra.

The transfer matrix calculations give the solution
of a large number of problems at once, one cor-
responding to each component of the incident dis-
tribution. That is, one obtains the entire T and R
matrices. It has previously been very difficult to
get such extensive information, especially angular
distributions. Thus if detailed information about
angular and energy spectra for a variety of source
distributions is wanted, the method is very attrac-
tive. On the other hand, if one is interested only in
a single problem, for instance, the total dose due to
a given monoenergetic source with a given angular
distribution, then it gives much more information
than is wanted.

A major computational advantage is that various
intermediate results are common to problems for
different configurations. The bulk of the computing
time for a single problem goes into evaluating the
matrices B, and C. which together form the diago-
nalizing matrix for W. These are specific to the
material and do not depend on the slab thickness.
The H, T, U, and R matrices for a slab are char-
acteristic only of the material and the thickness of
the particular layer, and do not depend on the re-
mainder of the configuration. Thus intermediate
results such as the B, C., and H matrices can be
stored on cards or tape and need never be re-
computed. This indicates that the method is best
suited for extensive computation programs.

All the calculations so far performed have used a
half-range Legendre polynomial expansion in angle
and a multigroup representation in energy. There
is no reason to believe that this is the best representa-
tion possible, especially in angle. The question is
an important one, since the total computation time
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is roughly proportional to the time required to
perform a single matrix multiplication, which in turn
goes roughly as the cube of the order of the matrices.
There is thus a very strong incentive to represent
the distributions as efficiently as possible. The prob-
lem is to determine a finite set of functions of angle
such that linear combinations of them will give good
approximations to the transmitted angular distri-
butions for a large variety of configurations.

XI. COMPARISON AND SUMMARY

The essential principles of the transfer matrix
method developed here are:

1. The reflection and transmission matrices can
be combined into an H-matrix that satisfies a simple
composition law (Sec. II).

2. For a slab one has H = exp — W{, where W is
independent of thickness (Sec. III).

3. W can be determined in terms of the dif-
ferential cross sections, that is, from microscopic
properties of the medium (Sec. V).

In recent years, Principles 1 and 2 have often been
rediscovered and used in various applications. The
exponential property of H is not always pointed out.
In particular, when « and @ are 1 X 1 matrices—
that is, numbers—the diagonalization is simple and
one need not formulate Principle 2 explicitly. It
is instructive to look at the papers mentioned in the
Introduction in relation to these three prineiples.

In his work on the transmission of polarized light,
Jones” was not concerned with internal reflections,
and so in his work there is no distinction between
scattering and transfer matrices. Both reduce to
transmission matrices for the amplitudes of the
electric field in the two polarization states. Prin-
ciple 1 follows immediately. Jones explicitly states
and uses Principle 2.

Bobrowsky® derived Principle 1. Principles 2 and
3 did not enter into his work since he did not look
at the structure of the individual H-matrices. Rather,
he made some hand computations using somewhat
arbitrary values for the elements of the individual
transfer matrices.

The work of Rowe,” of Aronson,® and of Yarmush*
on electromagnetic or mechanical vibrations all make
use of Property 1. Property 2 occurs only implicitly
in their work. Pace and Mittra® also use only Prin-
ciple 1 in their treatment of transmission in a
bifurcated wave guide. In that context they find it
necessary to discuss the algebra explicitly.

In none of these papers is W determined in terms
of microscopic or atomic properties (Principle 3);
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all the relevant information is already contained in
the index of refraction or some other macroscopic
quantity. A comparable situation arises in diffusion
theory. The H-matrix can be found from the diffusion
solution by matching boundary conditions. Then
W is given directly in terms of the diffusion coef-
ficient and the attenuation length, which are con-
sidered to be macroscopic parameters.’*

The transfer-matrix approach is really a whole
family of techniques. Each standard approximation
for the angle and energy integration of the transport
equation corresponds to a particular choice of angu-
lar and energy basis functions. Thus, for instance, the
discrete ordinate (Wick-Chandrasekhar) method,’
the spherical harmonic (P,) method® and the S,
method,*® which are generally regarded as methods
for approximating the integrodifferential linear
Boltzmann equation, can equally well be used to
approximate the explicit solution obtained in Secs.
IIT-V. From this point of view the transfer matrix
approach can be regarded as approximating the
formal solution of the Boltzmann equation directly
rather than first approximating the equation itself.
Explicit formulas for a polynomial expansion in
the cosine of the angle and a multigroup scheme in
energy have been given in Sec. VI. In Appendices
D and E the method is applied specifically to a
P, expansion. The sample numerical calculations
discussed in Sec. IX indicate that large scale cal-
culations are feasible in a double P, multigroup ap-
proximation. The point of this paper has been, how-
ever, not to justify the use of any particular basis
but to outline the general procedure with enough
detail so that one can see how to set up numerical
computations.

Because the method is in principle so versatile, it
is tempting to try to apply it to irregular configura-
tions in which position as well as direction and energy
is a variable. So far such an extension has proved
impractical, since the matrices become too large
to handle readily. However, in geometries in which
there are certain simplifications, notably in one-
dimensional spherical and cylindrical configurations,
the method may be attractive. A discussion of media
whose bounding surfaces are of the form p;, =
r.f(8, $) where p, and p, are, respectively, the radii
vectors to the inner and outer surfaces, is given in
Appendix F.

3¢ We make the distinction here between diffusion theory,
which is & macroscopic theory, and the P;-approximation, in
which the diffusion parameters have a meaning in terms of
the cross sections.

3 B. Carlson in Methods in Computational Physics, edited

by B. Alder, 8. Fernbach, and M. Rotenberg (Academic
Press Inc., New York, 1963) Vol. 1, p. 1.
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The method may also prove useful in multiplying
media and in the presence of internal sources, though
calculations in such media have not been carried
out. One can also determine the conditions for
criticality. In the formalism described here, eriti-
cality is characterized by the condition®* det U = 0.
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APPENDIX A. SERIES SOLUTION FOR H

To find a series expansion for H it is most con-
venient to work with

J=P'WP (AD
where W is given by (14) and
P - {1 I 42)
I -I

Iis a unit matrix in the energy-direction subspace.
J has the explicit structure

0 ¢
I- [ ] ,
8§ 0
where ¢ = @ 4+ 3 and 8 = a« — B. One can show
easily by induction that

(A3)

= [(dﬁ)" 0 ]
0 (59" (Ad)
P [ 0  4(39) }
5(¢3)" 0
Then
_ -1 - (—l)ktk k-1
H = P(exp — J)P™* = ’g——m——pjp . (A5)

Breaking up the summation in (A5) into sums over
even and odd values of k, evaluating PJ*P™" using
the forms (A4) for J,, one finds

g-ly. 2 [(«sa)" + (30)°

(88)" — (39)"

(e3)" ~ <sa>"}
2 = (2n)!

(9)" + (39)"

Ld t2n+l
,;, @2n 4+ !
8(3%)" -+ ¢(8d)"

_1
2
[ (A6)
—8(e%)" -+ ¢(59)"

8(68)" — d(ﬁd)"J_
—5(d8)" — 4(39)"
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Thus U can be written as

tk

1 «©
=35 Z (Ak + B,)
2 =
with Ay = B, = I and A, and B, computed re-
cursively by
Ak =
Bg =

dBk—l ]
3A;-,.

(A8)

The recursive generation of the coefficients A, and
B, makes the series solution easily adaptable to
machine computation. However, the series converges
very slowly, since convergence is determined by the
most rapidly attenuating component, whereas phys-
ically the least rapidly attenuating component domi-
nates for large thicknesses. The diagonalization
method described earlier was found to be preferable.

It is of interest that the series can be formally
summed to give

H=-512F+n E—n]_l_%[—y— v ——y+v}

E—n &+n p—v utv
(A9)

where

£ = cosh (85)¥, n = cosh (54)¥¢, (A10)

v = 5(¢8) ginh (68)t v = ¢(56)"% sinh (84)*:.

APPENDIX B. CUTBACK PROCEDURE FOR
NUMERICAL COMPUTATION OF T AND R

The transmission and reflection matrices are given
in terms of decreasing exponentials only, according
to Egs. (23a)-(24b). However, it is possible to
compute T and R directly, according to Egs. (21a)-
(22b), without eliminating the increasing exponen-
tials, if sufficient care is taken.

Let us assume that the machine holds floating
point numbers to m decimal digits. Define M = m
log,10. Let A, be the smallest eigenvalue and A,
some other eigenvalue for which (A, — X}t > M,
where ¢ is the thickness. U is a sum of terms of the
form b; (exp A.t)c;. We assume that the b; and ¢, are
of the order of unity. Then a term b, (exp Mt)c, will
be approximately 10™ times as large as by (exp Aot)co,
and no trace of the latter term remains in any ele-
ment of U.

To avoid this loss of significant information, we
replace \, by a cutback value N, defined by

()1’, - ko)t = K.

Here K is a cutback constant whose value is opti-
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mally chosen, as we shall now show, as about equal
to M /2. With this value for K, the physically im-
portant term b, (exp Agt)c, is about exp (—K) times
as large as the physically unimportant term b, (exp
ANb)Cs.

Define k¥ = K logiee. The important information
is then contained in the (m — k) less significant
digits of U. On the other hand, the eigendistribution
corresponding to A, is computed to be attenuated
by a factor no greater than about exp (—K) times
the attenuation of the fundamental distribution. If
a calculated eigendistribution is attenuated more
strongly than this, the fractional error in the final
result introduced in replacing A, by N/ is about
exp (—K), so that only the first k digits in the cal-
culated transmission are reliable. Thus the number
of meaningful digits is min (m — k, k), which is a
maximum for k = im,

APPENDIX C. EVALUATION OF D,.
Equation (45) defines D,..(y) as®®

1

1 1
D,,,,,('y)=./;dw./;dwww Rem,

where
S =1—0 — 0 — 7+ 2.

The integrand vanishes when 8 < 0. This con-
dition cuts off the integral at values of w and o' less
than the nominal upper limit, unity. Let

psin ¢, o' = pcoso,

= (1 = )1 — vsin2¢)7".
Then 8° > 0 implies p < 7. In that case, o® <

r*sin*¢ < 1and o < +° cos® ¢ < 1, so the limits on

o =

¢ are (0, ix). Let p = r cos a. Integrating over
0<¢o<L1im0<ac<inr weget
Dpn() = Coninsr 8In™ 9K, (y), (020)
where
1 (¥
C.=- f cos’ o da
™ Jo
= 132546(k ; 1) % , k> 0and even
' (C2)
24 -+« (k — 1)

1
= =572, k> 0Osndodd,

% In this appendix the indices of the elements of D will
be written as su%scripts to avoid confusion with exponents.
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¥
Kﬂm(’)’) = Knm(‘)’) = /; (1 — 'ysin 2¢)—i(m+n+2)

sin"¢ cospdp, ¥ <1 (C3)
and
9 = arc cos’y. (C4)
From (C3) one finds the recursion relation
Eu) = —— L ). (©5)
mn m +nd’Y m—1,n—1 .
By making the substitution
cot ¢ = cos n — 8in 5 cot z
in (C3), one finds
Ko = csc™' g f sin™ z dz. (C6)
7
Combining (C1) and (C6), one finds
D,o(y) = Cpsr sin™ z dz, (C?
7
and therefore
D) = Cunr(l — ¥, (C8)

where a prime is used to denote a derivative with
respect to v.

We will now demonstrate algebraic recurrence
relations for computing the D,,. It will turn out
that the cases m + =n even and m + n odd are
completely uncoupled. Since the D,,, are symmetric
in m and n, they need be computed only for m > n.

Integrating (C7) by parts and using (C2), one has

1 m—1
Dral) = 7oy [Coir 7)o
+ (m — DD,z o] (C9)
From (C9) and the starting relations
Dy =1 — (n/7), (C10a)
Dy = (1 + ), (C10b)
we find all the D,,,.
From (C1) and (C5) we find
D _ Cm+"+1 sinm+n+1 77
™ (mt+nmm+n—2)---(m—n-+2
dn
X d—’yn Km_,,'o. (Cll)

Equation (C11) implies directly that
Dm+l.n+l = [1/(m + n + 3)][(1 - 72)D:nn

+ (m+n+ DyD.]. (C12)
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Specializing to » = 0 and using (C8), we obtain
Dml = [1/(m + 2)][Cm(1 - 72)*,” + m'me-l,O]r
(C13)

which gives all the D,,,.
To obtain the other D,,,, we first observe that

Dy, = [’m/(m + 2)]Dm-—1.0y (014)

by explicit differentiation of (C11) for » = 1, using
(C6). From (Cl14) and the differentiated form of
(C12), we obtain by induction on m + n

Dl = [mn/(m +n + D]Dns -

(C12) and (C15) yield a second-order differential
equation

(1 — 2D}
+ (m+n— 1D, — mnD,, =0

(C15)

(C16)
and a purely algebraic recursion relation

(m+n+ 1)1(m+n+3)
X [(m +n + D Doy + mn(l — ¥°) Dy i
c17)
(C17) is the final relation needed for computing the
remainder of the D,,,.

We note finally that for m + n even, D, has the
structure

Dm+l s+l =

— A
D) = (1 4+ D)aty + L=V B0, ©18)

where 4,,, is a polynomial in v of degree min (m, n)
and B, a polynomial of degree [max (m, n) —1].
A,. and B,, are either even or odd polynomials.
This all follows from the fact that Dy, [(Eq. (C10a)]
is of the form (C18) and the form is preserved by
all the relations (C9), (C13), and (C17) from which
the other D,., are found. Similarly, for m + n odd,
D, is a polynomial of degree max (m, n).

APPENDIX D. LEGENDRE POLYNOMIALS AS
BASIS FUNCTIONS

Consider the full-range Legendre polynomials
P,(w) taken as basis functions, with g(w) = 1. Then
certain of the elements D,.. of the matrix D =
qGD§ = ¢D{ can be evaluated directly, without
first evaluating the D, as in the previous appendix
and then taking linear combinations.
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We note first that we can write

1

Re S,

= 7% j;" d¢ 5(7 — e’ — (1 _ wz)*(l _w,2)§ COS¢).

Dy
D.,,, can be written explicitly as
= ! ! P, ()P (")
- ’ LmW @)
Donl) fo deo fo df Re g s®s. (DY)
We introduce the Legendre expansion
D-nm(’y) = kz-:l) %(21‘; + l)ak,mnPk('Y)' (D3)
Then
l -
Qpon = f D, ()Pi(y) dy
-1
1 1 1
- [ Pwa [ Pute) o [ Py awr
-1 1] (1]
1/ —
X f; dé 8y — ww
- (1 — ) — '} cos ), (D4)

where we have used (D1) and (D2). We integrate
first over ¥ and then over ¢, and use the addition
theorem for spherical harmonics. Only one term
survives after integration and we find

Dyay) = g:o 32k + DIwalinPi(y)  (D5)
where
L= [ ' PUPole) do (D)
If m and k have the same parity,
Tim = Oka/(@m 4 1).
Thus, if m and n have opposite parity,
D) = 3[Pu(v) + Pu)L - (D7)

If m and n have the same parity, there may yet be
some point in using the series (D5) if convergence
is sufficiently rapid, rather than first computing
the D,,,. In that case,

D) + (= 1)"Dp(—7)
= %‘l_ﬁ Po(Y) Smn- (D8)

Now for the Legendre polynomials, ¢n. = 0
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for m + n odd. Then from the form (C18) of the
D,.. we deduce

Buut) = A1 = ) + But) =72, 09)

where A = qAq, B = ¢B§. 4,., has the same parity
as m and B,, has opposite parity. It follows, by
evaluating the left-hand side of (D8) with the help of
(D9), that
Aa®) = G Pallon (D10

No simple form for the B,,, has been found. They
are apparently related to the second solution of
Legendre’s equation.

Finally, it is of interest to note that (D1) implies
the expansion

1

Re e o

- SR PP@Pm, 8 >0

k=0

(D11)

APPENDIX E. INTERIOR FLUX BY SPHERICAL
HARMONIC EXPANSION

There is nothing in the transfer matrix formalism
that specifies whether one is computing the flux in
the interior or at the surface of a medium. The
only difference is in the boundary conditions. It
is of interest to consider a spherical harmonic ex-
pansion of the interior flux for a one-velocity prob-
lem. We will show how one gets the standard dif-
ferential equations for the spherical harmonie coef-
ficients for the transport problem from the dif-
ferential form of (9). To see this, one rewrites (9)
for a differential thickness dz as

®(z + d) = Hldn)®(@@) + Q(da).  (El)

By virtue of (12a, b) and (13), one has the dif-
ferential equation

®'(z) = ~Wa() + Q'(»), (E2)
where
U@ = [ S*“’]- ®)
—S8.(2)

In this appendix a prime will denote a derivative
with respect to z. S.(z)dx is the unscattered flux
at £ 4 dx due to sources in dx and S_(z)dz is that
at  due to sources in dz. ® can be written as

Xll .
X2

d)=
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We now introduce the angular coordinate ex-
plicitly. Let the flux ®(z, w) be expanded in Legendre
polynomials with respect to the positive z axis:
oz, = 3 2L

i=0

a()P(w),

-1<w<1. (B4

Now by our convention, x; and S, are measured
with respect to the positive 2 axis and x., and S_
are measured with respect to the negative z axis.
In the latter case, —w — w. Thus

x@ 9 = 32t a@pr,
0<w<l1 (E58)
x, 9 = 3 2EEL (-0'a@Pw),
0<w<1l. (E5b)

Let S(x, w) be the source strength at x and » per
unit volume and solid angle. S can also be expanded:

se,o = 2 EEL P,
~1<w<1. (E6)
Then
S.e ) =1 S 2EL gyp ),
0<w<l, (E7a)
S =1 ZEEL iy,
0<w<1  (E7)

One should note that there is a redundancy in
the elements of ®. For each [, ¢, appears as a com-
ponent of x, and (—1)' a; as a component of x..
It is convenient to consider even and odd ! compo-
nents of Eq. (E2) separately. One finds

Fia. 5. Schematic general geometry.
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F =
G =

—d¢G + (S, — 8.), (E8a)
—3F + (8. + 8., (E8b)
where F = x; + %, G = x; — %3, and ¢ and 8 are
given by (16a, b). In terms of the integral kernels,
1
G — f [Ko(w, @) + Kyw, )]
(1]

X Gz, o) do’, 0<w<1,

with a parallel expression for 8F. Using the appro-
priate one-velocity form for (28a, b), one finds after
some manipulation

-2k + 1
’ Z +

a; = & 9 [8: — (b — nofi)a]
X f_ 11 IL"’Z,PA‘L) dw,  (E9)

where ¢, is the scattering cross section and o.f; is
the normalized kth partial scattering cross section:

(E10)

The integral in (E9) is to be taken in a principal
value sense, so that it vanishes when k and [ have
the same parity.

fo = 2 flx o (W) Py(w) dw.

o, J-

From (E9),
n+1 , n ’
2n + 1 Gpt1 + 2n + 1 Qp—1

(E11)

=38, — (p— na.f,.)a,.,

which is the usual form of the P, equations.®*

APPENDIX F. GENERAL GEOMETRIES

Consider a body of arbitrary general geometry
in which the surface is divided into two nonover-
lapping complementary faces. A particle is said to
be reflected if it emerges from the same face at which
it enters. If it emerges from the other face, it is
transmitted. Thus, the particles incident at A’ and
C in Fig. 5 are reflected from the outer face. The
particle emerging at P is assumed to be absorbed
in some way and not to reenter at Q even though
Q lies on the straight line CP. The particle incident
at A is transmitted. If the medium is not a slab, an
infinite cylindrical shell, or a spherical shell, then
T, R, T*, and R* are integral operators whose kernels
depend on the entrance and exit points of the rays
as well as on direction and energy.

We now specialize to a family of concentric similar
shells whose inner and outer faces are given, re-
spectively, by
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pin = 71f(0, ),
pout = Tzf(op ¢)

where (p, 8, ¢) are spherical coordinates with some
point in the interior as origin. r is the parameter
which indicates which member of the family of
bounding surfaces is under consideration and can
be regarded as the radius of that surface.

The H-matrix for the shell whose first face has
radius r, and whose second face has radius r, will
be written H(r,, r,). The formula (5) becomes

H(rs, r2)H(rs, 1) = H(rs, 1y).

F1)

(F2)

This relation holds whether or not r, is between r,
and ;.

In order to eliminate the inverse r* effect, it is
convenient to define intensities as the ordinary flux
per unit area and solid angle multiplied by »*. With
this convention a simultaneous scaling up of the
density by a given factor and scaling down of dis-
tances by the same factor will leave H unchanged.

Consider now H(r + ¢, r), with e infinitesimally
small. Clearly, one can write

H(T + ¢ T) -1= G(C, + Er)’

where ¢C, is the change in H from the unit matrix
I due to geometrical factors and €¢E, is that due to
collision. To first order in ¢, the change due to col-
lision is just —eW. To this order there is no interac-
tion between collision and geometrical effects. The
form of C, is determined by noting that in the ab-
sence of collision, H(r + ¢, 7) is a function of /7
only, for any e. Thus

C =
E =

(F3)

C/r,
-W

(F4)
(F5)

and C and W are independent of r.
It is convenient to measure all ratios from some
standard radius » = ¢. Then defining

Y() = H(r, o),
(F3) becomes
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Y'@) = [(C/) — WIY(). (F6)

To find the structure of C, we examine the opera-
tional meaning of the transmission and reflection
operators in the absence of collision, i.e., for a
transparent medium. Consider a ray impinging on a
face (Fig. 5) at a point A and leaving the other face
at a point B. The operator for such processes is T.
Now consider a ray which enters at B and leaves at
A. The operator for such processes is T*. But for
a transparent medium this ray just retraces the
path of the first one, and we must have TT* = I,
orT = T*' = U*,

Consider now U*R = TR. R is the operator cor-
responding to a ray entering the first face at A’ and
leaving the same face at B’. To 'evaluate TR, con-
sider such an arbitrary ray exiting at B’, reverse its
direction, and then determine what is transmitted
(i.e., crosses the second face). This is clearly zero,
since the reversed ray emerges at A’. Hence U*R =
TR = 0. If the inner surface is convex, the result is
immediately obvious since then R = 0. Similarly,

R*U* = R*T = 0. Thus for a transparent medium,
H - [T 0] _[r o,
0 U* 0 T

From (I6) and the fact that Y(¢) = I, it follows
that for a transparent medium, C = ¢Y’'(c). Thus
C has the form

c=["°=c’fc 0 F7)
0« 0 -
where
v. = lim (d/de)T..(c + ¢ ¢©). (F8)
=0

We have used the symbol T,, to emphasize that the
transmission operator in (F8) is that for a trans-
parent medium. (F6) then becomes

—a+ Y
Y@ = r Y0). (F9)

- Y
6 ety
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The Dirac equation for spin-} particles in curved space-time is formulated using Cartan calculus.
Unlike previous formulations, this method is easy to use because it expresses the Dirac equation in
terms of well known objects like partial derivatives and special relativistic Dirac matrices. It allows a
simple and direct treatment of neutrinos in homogeneous nonisotropic universes and in plane-wave
geometries, These solutions are compared and contrasted with the corresponding solutions contain-

ing electromagnetic radiation.

L INTRODUCTION

NE of the most fruitful innovations in modern

differential geometry is Cartan’s calculus of
differential forms and movable frames. Familiar to
mathematicians since 1901, this caleulus has re-
cently been applied to various physical problems.
It is particularly appropriate to formulate Maxwell’s
theory of electromagnetism and Einstein’s theory
of gravitation in terms of Cartan’s calculus; not
only does it allow a unified description of the various
differential operations and thus facilitate many com-
putations, but it also has opened the door to dis-
covery of many new features and relationships of
these theories."

In the case of the Dirac equation in curved space,
a formalism involving movable frames (tetrads,
Vierbeine) is not only useful but virtually un-
avoidable. It is therefore natural to use the identical
frames to describe the Dirac field in curved space
and the curved space itself. In other words, the
Dirac equation can be formulated more simply and
directly in a space—time structure described by Cartan
frames than in any other space-time description.
Whereas the curved-space Dirac equation, written
in holonomic coordinates, has been known to phys-
icists since 1928,% its Cartan form® has seldom been

* This research has been supported in part by the National
Aeronautics and Space Administration.

t National Science Foundation Predoctoral Fellow.

1 By way of example, see the discussion of electromagnetism
in general relativity by C. W. Misner and J. A. Wheeler,
Ann. Phys. (N.Y.) 2, 525 (1957).

2 H, Tetrode, Z. Physik 50, 336 (1928); V. A. Fock and
D. Ivanenko, Z. Physik 57, 261 (1929); E. Schradinger,
Sitzber. Preuss. Akad. Wiss., Phys. Math. Xl., 105 (1932);
V. Bargmann, Sitzber. Preuss. Akad. Wiss., Phys. Math.
Kl.,, 346 (1932); R. Penrose, Ann. Phys. (N.Y.) 10, 171
(1960). Also see W. L. Bade and H. Jehle, Rev. Mod. Phys.,
25, 714 (1953) and the references cited there.

3 A, Lichnerowicz, Bull. Soc. Math. France, 92, 11 (1964);
A. Lichnerowicz, Ann. Inst. Henri Poincaré 1, 233 (1964);
A. Lichnerowicz, ERelativity Groups and Topology (Gordon
and Breach Science Publishers, New York, 1964), p. 823.

One of us éJ.M.C.) independently formulated the Dirac
equation in Cartan frames before the above references became

applied. A short review of the formalism and the
derivation of the Dirac equation in curved space is
given in Sec. II. In Sec. III we discuss the Dirac
equation in homogeneous, nonisotropic universes.
Section IV contains a study of the plane wave
geometry in the presence of scalar, spinor and elec-
tromagnetic fields. In the concluding Sec. V we
point out some of the implications of this work
for cosmological models and already unified field
theory.

II. DIRAC EQUATION IN CARTAN’S
MOVING FRAMES

1. Outline of the Cartan Formalism

Cartan’s formulation of differential geometry
makes it possible to describe independently two
aspects of tensor fields which appear inseparable in
the usual (“holonomic’) tensor calculus: (1) A co-
ordinate system z* (u = 0, 1, 2, 3, in this paper)
labels the points in space-time, (2) the (‘“nonholo-
nomic”) components of vectors and tensors at each
point are expressed in orthonormal frames «* which
originate at the point, and may change orientation
from point to point. These basic “one-forms” o
may be specified, e.g., by expanding them in terms
of the gradients dz” of the coordinates:

o' = a*, do’. ¢))

In some cases a preferred set of »” follows naturally
from some group property of the space—time.*

Since the " are orthonormal, the nonholonomic
metric has the diagonal Minkowskian form

g =diag (—1,1,1,1)
or @)
ds2 — __(wﬂ)ﬂ + ‘E (wt')ﬂ.

available. Also, see Ref. 12 for a discussion of the use of
Cartan calculus in physics.
* See, for example, A. H. Taub, Ann. Math. 53, 472 (1951).
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The frame components of tensors change from
point to point for two reasons: (a) change in the
tensor itself (b) differential rotation of the frames.
The latter is described by the antisymmetric tensor
(“two-form”):

dw" = %(a“r.x - a“x.r) dx‘ A dx’ = —w", A b)‘, (3)

where dz* A dx” = —dz’ A dz*. The operator d
used here and in the following denotes exterior
(antisymmetric) differentiation. Of course, the ex-
terior differential of a scalar is just the ordinary
differential from calculus as the notation suggests.

The one-forms w*, occurring in the expansion (3)
of the two-forms dw* are the connection one-forms.
Their components v,.,

A
Wy = 'Yux)\w )

are the familiar Ricci rotation coefficients. The
orthonormality of the frames implies that w, =
—w,,; with this condition, Eq. (3) can be solved
for a unique set of v*,.

The covariant differential of a vector, a = a%w,,
is defined in terms of these connection forms®:

Da* = da® + w®s0a’. )

The covariant derivative a®,, is the component
of the covariant differential along the w, direction:

®)

a®,, = Da*w, = da®-w, + 0%a’ w,;

hence,

«

a .4 = w,(a®) + 'Yaﬁ'ras-

Here w,, the vector dual to the form «”, is a linear
mapping of forms into numbers defined by

(6a)

8§ The contravariant component with respect to the basis w;
of the vectoral O-form ¢ = w;a® is the projection of this
vector along a given direction in exterior differential form
space, i.e., afF = w¥-w.a’. (¥ is a real-valued linear functional
which maps a vector a into its kth component with respect
to a basis w;.) Similarly, the contravariant component of the
vectoral 1-form da is w*-da. This component of the change in
a, denoted by Da*, is known as the covariant differential of
a*. (Da* is a real-valued linear functional which maps a basis
vector w; into the components a®;; of Da* with respect to
') The change in a is da = d(wa?®) = wida’ + dwia’; dw;
describes the motion of the basis vectors and is not an exact
differential unless space is flat. It is determined by the anti-
symmetric tensoral 1-form w¢; through the relation dw: =
w;wl; which leads to the corresponding equation (3) for the
dual space by the demand that the torsion vanish. Hence,
one obtains da = w;(da’ + wi;a?), and thus Da* = w*-da =
da* + «tai. Similarly, the covariant derivative a*; of a
vector with components a* is the covariant component (with
respect to the basis w¥) of the covariant differential in a given
direction in vector space,

ak; = Da*-w; =

0w, = §%,,

wbda-w;
= da*- w1 + yhjlal g
= wia*) + v+l
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which in holonomic frames becomes the well known
relation® on base vectors e, :

dz*-e, = e,(z) = 3,(z*) = §°,. (6b)

2. Dirac Matrices in Moving Frames

The 4 X 4 matrices v* necessary for the formula-
tion of the Dirac equation satisfy the anticom-
mutation relations

@

Since we are working in orthonormal frames, the
metric g** has the Minkowskian form (2) of special
relativity; therefore, one solution of (7) is given by
the special relativity Dirac matrices 4. The general
solution of (7) differs from these by a position-
dependent similarity transformation,

= 87 @) 8(). @)

Such a more general solution can always be trans-
formed back to the special relativity solution by
suitable position-dependent rotations of the Cartan
frames. All physical quantities formed from the
general solution (8) are the same as those obtained
from the special solution ¥*. Without loss of gen-
erality we may therefore confine attention to the
particular solution ¥*. The invariance of the usual
formulation of Dirac’s equation in general relativity
under similarity transformations is here replaced
by invariance under rotations of the Cartan frames.”

Yy + ¥r* = 2¢".

»
Y general

3. Spinor Connection and Covariant Differentiation
of Spinors

In addition to the matrices y*, a spinor ¢ (vector
in spin space) appears in the Dirac equation. Just
as in special relativity, we choose the transformation
properties of the spinor ¢ so that the Dirac equation
(and the " appearing in it) is invariant under
change of reference frames. Therefore, the covariant
derivative of ¥ must contain a term due to dif-
ferential rotation of the spinor frames®:

vu\b = ‘b:u - Pu\b (9)
As in the previous section this reduces to
vu\b = wu('p) - I‘u¢ (10)

for orthonormal frames.

¢ C. Chevalley, Theory of Lie Groups (Princeton Univer-
sity Press, Princeton, New Jersey, 1946), p. 81.

7 This idea may also be expressed in a different form: In
the usual formulation of Dirac’s equation, it is convenient to
introduce *‘Vierbeine” in order to solve Eq. (7). Our choice of
solution above implies that we have identified the Cartan
frames which we use to express components of a tensor, and
the Vierbeine which are used to express the y matrices.

8 See, for example, Table II in Ref. 11.
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To determine the spinor connection I', we observe
that, by the definition in the previous section, the
matrices ¥* are the same in every reference system
(with orthonormal frames)., Therefore, their co-
variant derivative must vanish;

¥ 4+ VT, =0. (11)

The expression for this covariant derivative follows
from the vector nature of +* in coordinate space
and its matrix nature in spin space. In Cartan frames
this equation becomes, using (5),

“’u(ﬁy) + 'Y'uu"fa “+ '7'Pu - rlﬁ, = 0.

»

VA = ¥ —

(12)

Since the 4" are the (constant) special relativity
Dirac matrices, we have the relation w,(§") = 0.
Consequently, the condition determining I', be-
comes

Yu¥+ [, T = 0. (13)
One solution of this condition is
111,1 = "(‘D'Yanﬁa'?" (14)

Let T, denote the general solution of (13). From
(13) it then follows that

¥, Tu — L] = 0. (15)

Since I — T, commutes with the four ¥, it also
commutes with all the matrices in the group of
Dirae¢ matrices. Since these matrices form an ir-
reducible representation of the group, we can apply
Schur’s Lemma: ', — I', must be a multiple of the
unit matrix 1, and the general T, is given by

-hanﬁoﬁ' + a’ulr (16)

where @, is an arbitrary vector. For charged par-
ticles, a, is identified with the vector potential.
For neutrinos we annul a,. The explicit form (16)
for the I, holds only in orthonormal Cartan frames’;
however, (16) is much simpler and more readily
applied than the corresponding expression in either
the Vierbein formalism® or the more general rep-
resentation in holonomic frames.®

Pn general =

4, Dirac Equation in Cartan Frames

In moving orthonormal frames, the curved-space
Dirac equation

'V.+ my =0 (17)

becomes (as also found by Lichnerowicz® in some-
what different notation and by a somewhat dif-
ferent route)

'7““’“(\(’) - -"I‘Mb + m'p =0,
¢ J. G. Fletcher, Nuovo Cimento 8, 451 (1958).

(18)
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This formulation quickly and easily yields the Dirac
equation in terms of well known objects like partial
derivatives and special relativity Dirac matrices.
This simplicity is an important reason for using the
Cartan method, rather than holonomic frames, for
the formulation of the general relativistic Dirac
equation.

II. DIRAC EQUATION IN A HOMOGENEOUS
NONISOTROPIC UNIVERSE

It was recently shown'® that the homogeneous,
nonisotropic purely gravitational universe of Taub*
can be extended to include a homogeneous elec-
tromagnetic field (“standing electromagnetic wave of
maximal wavelength’”) which is strong in the sense
that its contribution to the curvature of space is
nonnegligible; in the limiting case the curvature
of space into closure is caused entirely by the elee-
tromagnetic field, in contrast to the Taub universe
where the required content of effective energy arises
entirely from a standing gravitational wave. It is
therefore natural to ask, can one similarly incorporate
the other zero-rest-mass field known in nature, the
neutrino field, into a homogeneous universe.

The metric of a homogeneous universe of the type
investigated by Taub has the form (here and in
the following, 7, j, k, will denote a cyclic permutation
of 1,2, 3):

ds’ = —df® + (4,0)° + (4:02)" + (Asos)®  (198)
with
do; = 0; A 0wy (19b)
A, = A1) (19¢)

Such a metric has been characterized’® as describing
a closed universe which (for a finite time) has space-~
like surfaces ¢ = const of three-sphere topology,
and contains gravitational waves in the lowest pos-
sible mode (maximum symmetry).

In order to discuss the Dirac equation in this
metric, it is convenient to choose the orthonormal
frames

o' =4dt, o = A, (nosummation).

From Egs. (3) and (19b) the nonzero connection
forms follow immediately;

oy = —a', = oMAS + A — AD)/24,4,4,,

w‘o = wo‘ = w{fi{/At (20)

The connection coefficients are identified in Eq. (3a),
1 D, R. Brill, Phys. Rev. 133, B845 (1964),

(no summation).
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and the spinor connection is found by simple sub-
stitution into Eq. (14),

To = aol, @y
s = a1l + 7.9.(4:/24.)

— F7(A] + Ai — AD)/44, 4.4,

(no summation).

The Dirac equation (18) can now be written down.
We give the form appropriate for a homogeneous
neutrino field (m = 0, a, = 0, ¢ = ¢¥()):

oy + 3 [(4y/24)
+ 'Yu(Af/‘iAlAzAa)]‘P = 0.

Use new measures of the wavefunction and of time,

(22)

¥ = (A, 4, Ay and
v = > (AY/24,4,4;) dt. (23)
Then the equation takes the simpler form
Y’ /ot = —47s¢. (24)
It can be explicitly integrated,
Vo= (A4, 4) 7N = (4,4,4) %742y, (25)

Here ¢, is a constant spinor of integration, which is
determined (except for an overall, nonmeasurable
phase) by the normalization condition

[ wyvae=1. (26)
¢moonat

Except for the change in amplitude necessary to
maintain the normalization as the volume of the
universe varies, the wavefunction therefore only
undergoes a ‘“‘duality rotation,””* as shown by Eq.
(25). Thus, as in the electromagnetic case'® the
features of the time dependence affecting the stress-
energy tensor can be determined by a very simple
physical argument.

Equation (25) solves the problem of the response
of a neutrino field {0 the metric and is a complete
solution for a weak (test) field of negligible stress-
energy. However, to discuss the question whether
the curvature generated by the neutrino field is
consistent with the high degree of symmetry of the
universe, we compute the components of the stress-
energy tensor from the expression (92) given in Ref.
11:

u D, R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29,
465 (1957).
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Too = i‘P%’V&'ﬁo Z Af/‘lA?A:A:;
Toi = %Ui\bo(A? + Ai)/‘lAfAiA;,

T = (Yhorvo/44,424,)0, In (A;/A)).

Thus we see that the stress-energy temsor is not
diagonal. In particular, one of the components of
the energy flux vector must differ from zero if
Yo # 0. However, the Riceci tensor of the metric
(19a) is diagonal.* Therefore no choice of the A4;
(so far arbitrary) will permit us to satisfy Einstein’s
equations with the source tensor (27). We conclude
that, unlike the electromagnetic field, the neutrino
field generates a curvature which in nof consistent
with the high degree of symmetry of a universe
of the Taub type.

IV. PLANE-WAVE SOLUTIONS
1. Plane-Wave Metric

In this section further examples are given of the
use of Cartan frames for the case of a nondiagonal
metrie. In particular, we obtain a complete solution
in which the nongravitational fields are not treated
as weak.

We consider metrics of the type discussed by
Takeno,"®

ds = Adi® + Bdy’ + Cde® — Ddf’ + E dz dy,

which admit a five-parameter group of motions,
three translations and two rotations in the hyper-
surface orthogonal to the propagation direction.
A, B, C, D, and E are functions of z 4+ ¢. In a
suitable coordinate system the metric takes the form

ds® = ¢ dx’® + 2ep dx dy
+ @+ dF —df. (28)

Here (—2) is the propagation direction, and ¢,
a and B are functions of z 4 ¢ only.
A convenient set of orthonormal Cartan frames is

o =dt; o =gdz+ady; o = Bdy; o =de.
(29)

From Eq. (3) one finds the nonvanishing connection
forms (here ' denotes differentiation with respect
toz + t):

12 . W. Misner, J. Math. Phys. 4, 924 (1963).

13 H. Takeno, “The Mathematical Theory of Plane Gravi-
tational Waves in General Relativity”, Scientific Reports of
the Research Institute for Theoretical Physics, Hiroshima
University, No. 1 (1961). Also see H, Takeno, Tensor 10,
34 (1960) and the reference cited there.



242

W = wy = (¢'/e)’ + (¢/26)(a/¢)e’,
(8'/B)w’ + (¢/28)(er/ ) e,
—(/28)(e/¢) (" + o).

The nonvanishing components of the Ricei tensor

are™

R; =

(30)

2 2
W3 = Wy =

1-—-
Wy =

—R:; = —R; = (¢""/¢) + (8"/8)
+ e/ ee/B] /28.
2, Neutrinos in Plane-Wave Metric

@31

The spinor connection follows from Eq. (14);

Ty = (¢/48)(@/)'5'7* + bol,

T, = =3¢’/ + (0/28)(a/0)'71F° + 4°) + bul,
T, = —3(e/28)(a/0)'5: + (B'/8)7:1F° +4°) + bal,
T: = (¢/48)(c/0)'7'7* + bsl.

(32)

The Dirac equation for zero rest mass therefore
takes the form (b, = 0)

(790 + 7' (1/0)0: + ¥*(87'9: — (2/¥B)d:) + 73,
+ @+ B + 887
— (¢/48)(a/@)"vs)}¥ = 0. (33)

A solution of this equation can easily be written
in the representation for the 4" matrices used by
Jauch and Rohrlich,*

v = (iajc(zz(z++t)t))’

where a(z + {¢) is an arbitrary two-component
spinor field. The nonzero components of the stress—
energy tensor of the neutrino field (34) are

75 =

(34)

—T; = —Ts = ija*a’ — a*'a]
— (¢/28)(a/¢) a*c,a. (35)

We see that these components of the stress-energy
tensor fulfill the same algebraic relationships as the
Ricei tensor in Eq. (31). To satisfy the combined
Einstein—Dirac equations, it is only necessary to
fulfill one additional equation, e.g., Rq = T (since
R = 0 for these metrics). The solution of this
one equation is obtained in Sec. 4.

To obtain a solution for a Lee—Yang-type neutrino
with right-handed helicity, we demand that the
projection of ¥ onto left-handed states vanish,

W For discussion of the computation of the Ricci tensor
in the Cartan formulation see, e.g., Ref. 12,
15 J. M. Jauch and F. Rohrlich, Theory of Photons and

Electrons, (Addison—Wesley Publishing Company, Ine.,
Reading, Massachusetts, 1959).
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(1 — )¢ =0,
which implies, in the representation of the ¥ matrices
used by Jauch and Rohrlich,'® that the second com-
ponent of a(z + t) vanishes.

3. Integral Spin Fields in Plane-Wave Metric

For completeness we mention how integral spin
fields can be incorporated into the plane-wave
geometry. For a scalar field ® in the metric (28),
the conditions
Tyw=Tx=0

—R =T = —[m¢>2 + (wﬁf’)z -+ (wz‘p)z]

imply that the field must be massless and constant
in the 1 and 2 directions. Again we require an
algebraic structure as in Eq. (35) for the stress-
energy tensor, and find that only

=>4+ 1) (37)
satisfies these conditions. The massless Klein—~Gordon

equation is also satisfied by (37). By proper choice
of the amplitude of ®, the remaining relationship

Roo = T = (ao<p)2 (38)

and (36)

can be satisfied.

Electromagnetic fields in a plane-wave metric
were investigated by Takeno.* His solution, re-
written in the language of Cartan frames,

fo = fa = ez + 1),

(39)
for = fs2 = ex(z + 1),
satisfies the free-space Maxwell equations,
df =0, d*f =0, (40)

and the algebraic relationships (35) of the stress-
energy tensor. Again Einstein’s equations can be
satisfied by the proper choice of the amplitude of
the electromagnetic fields.

4, Example of a Solution of Einstein-Klein
Gordon-Dirac-Maxwell Equation

In order to obtain a simple solution, the fields
are chosen such that the contribution to the stress-
energy tensor from each field is constant.'® This
is s0 if we choose

& =K,(+1, e=KsnE+i,

e =K, cos(z+ 1), 41)

16 The existence of such fields in flat space—e.g., circularly
polarized electromagnetic waves—is well known. The problem
of the infinite otal energy represented by such waves is com-
mon to all types of plane waves, and can be resolved by con-
sidering them as a limit of spherical waves very far from the
source.



CARTAN FRAMES AND

and
Y= (ii )fe'“””, where ff = 1K,
3

Here X,, K,, and K, are constants. For simplicity,
choose

a=10 and 8 = B coshn(z + 0. (42)
Then Einstein’s equations reduce to
(‘PH/W) + o’ = _K92 - Kaz - Ksz} (43)

with the solution
e=Kecos® + K+ K2+ KN+ t+ 9,
(44)

where 5 and K are integration constants, This
solution appears singular for

z+t=s4o and z4+t+yp=7a(m+ 3}

X @ + K+ K+ K)7,
where m is an integer, but these singularities can
be removed by coordinate transformation.”

V. CONCLUSION

The Cartan method has long been recognized as
an appropriate way of treating electromagnetism.
In the present paper we have seen that it is equally
successful in describing spin-3 fields in curved space.
By using the physical components'® (components
in orthonormal frames) of all quantities one retains
many of the simplicities of the flat-space Dirac
equation.

The behavior of neutrinos in homogeneous, non-
isotropic universes showed similarities to, as well
as important differences from, that of electromagnetic
radiation. Since the energy flux vector (To:) of
neutrinos never vanishes, the curvature generated by
them is not consistent with the high degree of sym-

17 W, B. Bonner, Ann. Inst. Henri Poincaré 15, 146 (1957).

18 ], Weber, General Relativity and Gravitational Waves
{Interscience Publishers, Inc., New York, 1961).
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metry in the homogeneous Taub-type universes.
This fact is closely related to the absence of ‘“neu-
trino charge.”””®

The plane-wave solution of the Einstein—Klein
Gordon-Dirac-Maxwell equations allows an interest~
ing mathematical conclusion. If only an electro-
magnetic field is present (K, = K, = 0), a knowl-
edge of the geometry alone—i.e., Eqgs. (42) and
(44)—allows one to reconstruct the field amplitudes.
Rainich, Misner, and Wheeler" have shown that such
a reconstruction is possible for general electromag-
netic field distributions and have formulated an
“already unified field theory’ of electromagnetism
and gravitation in purely geometrical terms. A
similar geometrical formulation is possible for the
case of a scalar field and gravitation.”® It is natural
to ask, is it possible to write an already unified
field theory which includes all three zero-rest-mass
fields considered here, scalar, spinor, and vector.
Inspection of Eq. (44) shows that the amplitudes
of all the nongravitational fields enter in the same
way into the expressions (42), (44) for the metric
coefficients. It is therefore not possible to conclude
what the separate amplitudes are from a knowledge
of geometry alone. Thus the plane-wave solution
of Sec. IV4 is a counterexample to an already
unified theory of gravitation, electromagnetism, neu-
trinos, and scalar fields.

ACKNOWLEDGMENTS

We are grateful to Professor J. A. Wheeler for
reading the manuscript and making several helpful
suggestions. We are also indebted to Marion D.
Cohen for checking some of the calculations.

1# For electromagnetic fields in the Taub-type universe,®
the outer (NUT) space is charged in the sense that there
exists a nonzero electric field flux through a large sphere in
the asymptotically flat region. If neutrinos in a Taub-type
universe had an identical behavior, then the outer space
would exhibit neutrino charge. However, the absence of
neutrino charge has been shown by Klauder and Wheeler,
Rev. Mod. Phys. 29, 516 (1957).

2 See, for example, D. R. Brill, Nuovo Cimento Suppl.
2, 1 (1964).
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A method is given for expanding operator functions of q and p, where p = %/i(8/3q), such that
all q factors are to the left of the p factors. The method is applicable to the rearrangement of creation

and annihilation operators.

1. INTRODUCTION

T is sometimes necessary to raise a function of the
operators q and p, where p = %/2(3/9q), to the
nth power. One may then also want to rearrange the
resulting expression in such a way that all the ¢’s
precede the p’s. This can be accomplished by the
use of brute force in expanding the function and
using the commutation relation pq = qp + (&/7)
to put the q factors on the left of the p factors. But
the labor involved prohibits this method in all but
the most simple of cases. Thus, for example, in at-
tempting to expand (g + p)" in powers of q‘p’ by
calculation of (@ -+ p)(q + p) --- (@ + p) one
would very quickly be entangled in long and un-
wielding manipulations. We describe here a rather
simple method for doing this. Qur main result is
this: Given a function F(g, p) of the operators q
and p then

F@p = San@ [ @+ 0™, O

where o, and u.(q) are the eigenvalues and ecigen-
functions of the eigenvalue problem

Flg, (t/9)(0/09lu(9) = eu(q).

The u:(q) are assumed to be normalized to one if
the spectrum is discrete and to a delta function if
the spectrum is continuous. In the continuous case
the summation is replaced by an integration.

2. PROOF OF THE GENERAL THEOREM

We prove (1) by showing it to be true forn = 1
and then using induction to prove it in general.
Let F(q, p) operate on an arbitrary function f(g)
whose expansion in terms of the u,(g) is

() = 3 (@),
Then
o220 = Somu. @

* Research sponsored in part by the Air Force Office of
Scientific Research.

Now consider

> aan@ [ ut@+ 0 a0

|

e 1

- aan(@) [ ulg + o) u () a6

a,a,,u,‘(q) f uk(g + Ou.(qg + 6) do

»
]
=]

]
Ma
M IMe i

7% 7 5&:“&(({)

2{:) akafﬂuk(g) *

»
1

<@
...
L]

gince
j:w wi(g + Qu,(qg + 0) do = 3,,.

Thus (1) is proved for n = 1. To prove it for any
n we assume it to be true for n and show that it
holds for n 4 1.

F( h;’q)ﬁm( zaq)f(g)

= i i ati(g) f wi(g + )¢ afui(g)

i=0 k=0

Fm+lf —_

X f_ u¥(g + 0)e"*f(q) do de’

1
Ms
Ms 8

e (q)

-~
0
PF
<

o 3

u%(q + Oulg + )

-— -0

Xug+ 0+ 0)flg+ 6 + &) dode’
= > T atu j: : [ : ui(g + 6)

i=0 k=0

X w(g + Ouilg + 0)f(g + ¢) do d¢’

> waiu(@ [ uta+ 0)ig+ 0 do

1]

= Z o Q) j: _ullg + 0)e"*"f(g) do,
and therefore, (1) is proved in general.
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If one wants to carry out the integration in (1)
before F" operates, the following procedure can be
used." Replace q and p by ordinary variables, ¢
and p, and carry through the integration. After
the integration is performed, arrange the expression
g0 that all factors of ¢ stand to the left of p and
then replace ¢ and p by the operators ¢ and p.
This works since the q factors preceded the p
factors in the original expression.

3. AN EXAMPLE

As an example we consider the expansion of
(A\q + p)” where ) is a real parameter. The eigenvalue
problem

(g +22 )it = a0

zag

can readily be solved. The eigenfunctions normalized
to a delta function are

ua(Q) — (zrh)—}eilk(aq—ih’).

In this case the eigenvalues « are continuous. We
now replace q and p by ¢ and p as discussed at the
end of Sec. 2. Thus (1) becomes

1 7 .
=g I
X exp [—i/h(ad — Ag8 — INO®) + i/hop] d6 da.

Considering [, o"¢"**’da as a distribution, this
yields

G H,[(1/20M0) (Mg + p)]
where H, is the Hermite polynominal of order n.
Using the definition

@ = 5 Ghmeds

klln — 2k)1
the above expression can be written as

1 N.H, McCoy, Proc. Natl. Acad. Sci. U.S. 18, 674 (1932).

FUNCTIONS OF OPERATORS

E " ( 1) *n! ("7' - 2’0)("'71) qu—z n—~2k—1_1
kim0 1m0 k'(’n - 2?5)‘ l p.
We now substitute q for ¢ and p for p to obtain

‘,g "g k!(r: l—)kgllc)! (n *l 2k)

X (ih/2)k}\"-k'zq"—2k-;p; .
4. CONCLUSION
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N +p)" =

In conclusion some extensions of the above method
may be mentioned. Equation (1), for n = 1, which
expresses an operator in terms of its eigenfunction’s
and eigenvalues can sometimes be profitably used
to bring all q factors to the left of the p factors of
produet of functions. Thus if F.(q, p) denotes a set
of arbitrary functions,

MA@ = % aled el
X uP@ut (@ + 0)e7 o,
where
#2em = [ o+ [ T2 O (0u) A1
and

(b) (k)

R 1i L)@ =

These results can be used in manipulating func-
tions of the creation and annihilation operators,
at and a. All that is required is to substitute a for
q and <ha’ for p. This follows from the relation
[4, p] = th[a, a']. A rigorous derivation of this can
be based on the use of Entire functions as developed
by Bargmann.” In that representation the annihila-
tion operator is “represented” by differentiation.
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The present paper develops a nonlinear theory for the deformation of an elastic surface by assuming
the existence of a strain energy function and postulating a principle of virtual work which governs
its mechanical behavior, By considering the strain energy function to depend on the first- and second-
order deformation gradients, the field equations and the general constitutive relations are obtained.
In addition to the conventional couple stresses, there are shown to exist energetically undetermined

double stresses without moment.

1. INTRODUCTION

ARLY investigations in the theory of elasticity
were mainly concerned with establishing special
theories associated with thin bodies. Following the
formulation of the general three-dimensional equa-
tions of elasticity, however, theories of thin bodies
were derived as limiting eases of this general theory.’
From that time on, few attempts have been made
to develop special theories of thin bodies independ-
ently of the general equations of elasticity. One such
attempt was carried out by the Cosserats’ who,
following an idea of Duhem,® introduced the concept
of the directed line and the directed surface. Ericksen
and Truesdell® have elaborated the ideas of the
Cosserats to formulate a nonlinear theory of strain
for rods and shells.

Recently there has been considerable interest in
developing a consistent nonlinear theory of shells.®”?
These references all have, as their starting point,
the equations of classical, three-dimensional elas-
ticity. There are, however, certain difficulties in-
herent in this traditional approach which, we believe,
may be overcome by treating the deformation of
an elastic surface. Here, using the latter procedure,
we obtain special theories of elasticity which govern
the nonlinear behavior of a surface.

* This work was supported by the National Science
Foundation under Research Grant NSF-GK99 and by the
National Aeronautics and Space Administration under Grant
NGR-24-005-059.
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In Sec. 2, the geometry of surfaces is reviewed
and the concept of a surface deformation is defined.
Deformation tensors L and K are defined which
are associated with changes in the intrinsic and
spatial aspects of surface geometry, respectively.
In Sec. 3, assuming the existence of a strain energy
function, a principle of virtual work is postulated
as governing the mechanical behavior of a surface.
This principle is applied in Sec. 4 to a Noll-type
simple material’® and a theory of membrane action
is derived in which the stress tensor is a symmetric
tangential surface tensor. Nonlinear constitutive
equations relating this tensor to the deformation
tensor L are obtained. The special form of these
equations when specialized to an isotropic material
is a simple two-dimensional analog of the equations
of Finger."

Finally in Sec. 5, the principle of virtual work
is applied to a restricted material of class two'®
under the action of arbitrary virtual displacements
to derive a complete theory of bending. In this
theory, both the stress tensor and the couple stress
tensor are symimetric surface tensors which depend
on the deformation tensors L and K. The nonlinear
constitutive equations are obtained and their simple
form in the case of “surface isotropy” is given. It
is found, in applying the principle, that it is neces-
sary to define a set of quantities 2 which may be
interpreted as double stresses and which do no work
during the deformation. This tensor gives rise, in
the conventional equilibrium equations, to a term
which can be considered as a transverse shear.
Moreover, there occur three additional equations
of equilibrium involving .

In the Appendix, we show the relationship be-
tween the equations of equilibrium derived here and
those given previously by Ericksen and Truesdell.*

10'W. Noll, Arch. Ratl. Mech, Anal. 2, 197 (1958).
(1834{‘ Finger, Sitzber. Akad. Wiss. Wien (IIa) 103, 1073
2R, A. Toupin, Arch. Ratl. Mech. Anal. 17, 85 (1964).
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2. KINEMATICS OF DEFORMABLE SURFACES

Let X* be rectangular Cartesian coordinates de-
fined in an E,. We define a surface S or an R,
imbedded in this E; by

X = XNUY, 2.1)

where U* are general curvilinear coordinates in S.
Here and in all cases, Latin and Greek indices take
on the values 1, 2, 3 and 1, 2, respectively. Equation
(2.1) is assumed to be single-valued and continuously
differentiable as many times as desired except pos-
sibly at certain singular curves or points. This
remark applies as well to all transformations with
which we shall be concerned.
The base vectors of S are given by X* , where

X* 4 = 8Xx%/oU" (2.2)
and the surface metric A is given by
AAI‘ = 5KMXK.AXM.P- (2-3)

In Eq. (2.2), (), denotes the total covariant
derivative." The unit normal N to S is defined by

eralNg = eKMPXM.I‘XP.A (2-4)
where
A = det A;-,A (25)

and era, exmp are the conventional permutation
symbols for two- and three-dimensional space, re-
spectively. The vector element of area dX; is

dz; = N,AYdU* dU°. (2.6)
The spatial aspects of S are described by the second
fundamental form B defined by:

Br, = NKXK.I‘A = _XK,I‘NK.A (2-7)
which satisfies the equations of Gauss and Wein-
garten

X" ra = BraN®;  Np= —BrX*,. (28)
Conditions of integrability to be satisfied by the

fundamental tensors A and B are the equations of
Mainardi-Codazzi

éra = GI‘AA}7

Bra,s = Brz.a 2.9)
and the Gauss equations
Rraaz = BraBas — BasBrs, (2.10)

where R is the Riemann curvature tensor of S.

We now consider surfaces S and s given respec-
tively by

13 J, L. Ericksen, ‘“Tensor Fields” in Handbuch der Physik,

edited by 8. Fligge (Springer Verlag, Berlin, 1960), Vol
III/1, pp. 794-858.
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X* = XNU*; (2.11)

We assume a deformation of S into s by a continuous
process through a succession of surfaces z*(u’, ¢)
where ¢ is the time variable. The mapping is defined
by

= "W).

u' = uN (U, (2.12)

associating points on S and s which will be referred
to as the undeformed and deformed surfaces, respec-
tively. Majuscule letters and indices will be assoc-
iated with S, minuscule letters and indices with s.
Hence for the geometry of s, Eqs. (2.1) to (2.10)
hold with majuscules replaced by minuscules where
appropriate.

From the previous discussion of surface geometry,
we may define, as measures of nonlinear strain of
a surface, deformation tensors

R 3
Lps = z' a2z = QU .Au’.z,

(2.13)
(2.19)

Here L,z, which we call the first Love-Kirchhoff
deformation tensor, is the two-dimensional analog
of the Cauchy—-Green tensor enabling us to calculate
length and angle changes. The second Love-Kirch-
hoff tensor K> arises as a natural consequence of
surface geometry and allows the calculation of
changes in normal curvature.

Clearly corresponding to L and K we may define
1 and k by

Kyz =n' 2z = b,,u',Au'.,;.

lap = AA[‘UA_aUP,p, (2.15)
kag = BArUA,aUP_p. (2.16)

If T* is a unit surface vector on S, then the stretch
A of a surface element originally in the T direction is

A* = L,,T*T>.

The extremum values of A* with respect to direction
at a point on S are the roots of the equation

det (LAZ - AzAAE) = 0- (2.17)

The basic invariants I, II, are the coefficients in
Eq. (2.17), i.e,

IL = AAELA}: = Lﬁ, (2.18)
IT, = (det Lss)/A = (a/4) /U,  (2.19)

where |u/U| is the Jacobian of the transformation
(2.12). Similarly we define the principal values of
K as solutions of

det (KAE bl ¢AAE) = 0
with the basic invariants given by

I = Kﬁ, (2.20)
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ITx = (det Kaz)/A. (2.21)

We next postulate that the surface has the physical
property of mass such that there exist a surface
mass density T'(U*) associated with S and v(u®)
associated with s. From the principle of conservation

of mass
/;I‘dE = [ydv.

If d= and do are the magnitudes of d=Z; and do;,
respectively, then from Eq. (2.6)

do/dZ = (a/A)? [u/U|
and hence from Egs. (2.22) and (2.19)
~/T = IIZ. (2.23)

An incompressible or isochoric deformation is de-
fined by

(2.22)

IIL = 1.

In the same manner, we may postulate surface
thickness functions H and % leading to the mass
per unit volume P and p, respectively, defined by

(2.24)

P=T/H, o = v/h.
If we now define an isochoric deformation such that
p=P, (2.25)
it follows that
h/H = IIZ. (2.26)

It is seen from Eq. (2.26) that Eq. (2.25) is implied
by Eq. (2.23). It is apparent that the concept of
surface thickness will have meaning only if used in
conjunction with a generalized definition of a surface
which hag the ingredients to represent changes in
thickness during deformation. The deformation of
S into s given by Egs. (2.11) and (2.12) maps one
two-dimensional space into another. We may gen-
eralize the concept of a surface to include not only
a two-dimensional continuum of points but also the
field of normal vectors on S. If we regard these
vectors asrigidly attached to their respective tangent
planes, then normals to S will map into normals
to s. In general, however, we may specify that
normals to S map after deformation into some field
of vectors not normal to s.

The concept of such a generalized surface was
introduced by the Cosserats’ and amplified by
Ericksen and Truesdell.* They defined such a gen-
eralized space as consisting of a surface with an
associated field of vector triads and called it a
directed surface. The deformation of such a directed

C. N. DeSILVA

surface is then specified not only by the deformation
of its points but also by the deformation of its
vector triads. Such a surface is of interest since it
may have sufficient structure to lead to an adequate
theory of thin shells.

We shall not pursue this concept in its full gen-
erality but shall consider a surface with a single
field of vectors defined on it. The deformation given
by Egs. (2.11) and (2.12) is then augmented by
defining vector fields on S by

D = DU (2.27)

and on § by
d' = d'(’)

and specifying that D at some point on S deform
or map into d* at the corresponding point on s.
In special cases either both or one of D* and d*
may be taken as normal to their respective surfaces.
In the former case, normals map into normals, while
in the latter the deformation of the normal is
specified.

3. A PRINCIPLE OF VIRTUAL WORK

We shall postulate a principle of virtual work
which is assumed to govern the mechanical behavior
of a directed surface. This principle assumes the
existence of a strain energy function, thus endowing
the surface with hyperelastic material properties.
The concept of a ‘‘variation” as applied to the
deformed state of the surface is exactly that defined
by Truesdell and Toupin.™

The virtual work @ associated with an arbitrary
virtual displacement is defined by

(2.28)

Q= 95 [s: ox* 4 g 82*,, + p, 8d'] de,

+ f’y[f,, ox* + I 8%, + qu 6d7] do, 3.1
where ¢ is a circuit enclosing a surface ¢ in s. The
quantities s; and f; will ultimately be associated
with the stress and body force vectors, while #;
and I will define the double stress and the double
body vectors, respectively. The quantities p, and g,
are a set of generalized forces associated with the
internal structure of a directed surface. We also
assume the existence of a strain energy function e
such that

3.2)
U4 ., Truesdell and R. Tou;I)in, Classical Field Theories,

ngaéx(xgbuch der Physik, Vol. III/1 (Springer-Verlag, Berlin,

€= e(xk; xk.Ay xk/AE):
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where

%zt _ { T } oz*
aU* aU” AZ).9U"
= z* su’ U 5.

Note that this is to be distinguished from

A
X /az =

Ppo e { r } ot
A2 Ut aUP \A 24 aUT
= xk.saua.Auw,z + $k.su5,u-

In the above definitions, { APE} represent Christoffel

symbols and the subscripts a and A indicate that
these quantities are evaluated with respect to the
metric of the deformed and undeformed surface,
respectively. Hence the surface we are investigating
is a restricted material of grade two.”* The energy
W stored during the deformation is then given by
W=fww. 3.3)
The strain energy function is subject to the condition
of “material indifference’”’ or ‘‘isotropy of space,”
i.e., € is invariant under arbitrary rigid motions:

de¢ = 0, (3.42)
when
(3.4b, ¢

where ¢’ is a constant vector and a] an arbitrary con-
stant skew-symmetric tensor. From Eqs. (3.4a, b),
¢ is independent of z* and from Eqs. (3.4a, ¢)

i} 0
[f x”-A + lie
dr WA

LTS
where the notation By,;, is that of Ericksen,” i.e.,
By:;; = 3(B,; — Bj;:). We now postulate a principle
of virtual work that a necessary condition for the
equilibrium of our surface is

@ = sW (3.6)

for arbitrary virtual displacements consistent with
whatever constraints may exist. The variation W in
Eq. (8.6) will be subject to the requirements of
objectivity given by Eq. (3.5) as well as of conserva-
tion of mass, i.e.,

8zt =¢f, &' = alx’,

(3.5)

a:il/Az =0

3(y do) = 0. 3.7

If we give the surface a rigid translation defined
by Eq. (3.4b) such that éW = 0, then from (3.1)
and (3.6) we obtain
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fcskdc—i-/;—yf,,da=0

which represents the equation of force equilibrium
of the surface. Hence s, represents a stress vector
with dimensions force per unit length, and f, a body
force vector with dimensions force per unit surface
mass. In an analogous fashion, if we subject s to
a rigid rotation defined by Eq. (3.4c) such that
W = 0, we obtain

95 [suz + mhx’ s + pu d’'] de

+ f7[f[kxi] + s + qudde = 0,

which represents the equation of moment equilib-
rium. Hence, for example, we may identify m{,z" ,,
pud’ as couple stress vectors and I'z" ;, qud’ as
body couple vectors. (A couple vector can be equiv-
alently represented by an axial vector m‘ or an
absolute second-order skew-symmetric tensor m'?,
see Appendix.) It is apparent that we can define
in general
Tz’ 5 = Mz’ s + was’

where the parentheses about two indices means that
the tensor is symmetrized with respect to these
indices."® Since i}z ; can be interpreted as double
force with moment, then m}z" ; is a double force
without moment'® and iz’ ; is a double force dis-
tribution. Similar remarks will apply for p,d’, Iz’ ;,
and q.d’.

We state here a form of Green’s theorem which
will be needed in our future work. Let ¢'* be an
arbitrary double tensor field defined on s. Let ¢
be a circuit enclosing the region ¢ in s and let »*
be the unit outward normal to ¢ and tangential
to s. Then Green’s theorem has the form

fc‘a,a do = Sgcwva de,

L

(3.8

where the spatial components of ¢** are referred to
a rectangular Cartesian coordinate system.

4. A MEMBRANE THEORY

In this section the principle of virtual work will
be utilized under the assumption that the strain
energy function depends only on the deformation
gradients z° ,, i.e., the material is simple.'® Applica~
tion of the principle under the restrictions imposed
by the condition of material indifference leads to

15 R. D. Mindlin, Arch. Ratl. Mech. Anal. 16, 51 (1964).



250

a system of mechanics in which the stress tensor
18 a symmetric tangential surface tensor satisfying
the membrane equilibrium equations, and is related
to the deformation tensor L,y through a set of
nonlinear constitutive relations. The form taken by
these constitutive relations under the assumption
of material isotropy is investigated.
Under the assumption that

€= G(xk_A) (4.1)
then if we set
12 = y(8¢/0x" AU’ 4 4.2)

the principle of virtual work (3.6), on applying
Egs. (3.1), (3.3), (3.7), and (3.8), takes the form

95 (s — ) &* + 5 62* ., + py 6 d"] de

+ f (.. +f2) 82" +T; 8"+ vg. 8 d] do =0.
’ (4.3)

Since Eq. (4.3) must hold for arbitrary variations,
we consider a virtual translation éz* = b*, where
b® is a constant and 8z* , = 8d* = 0. It follows that

b+ 7 =0 (4.4)
8 = t:l’, (4.5)

in s,
on c.

By now considering arbitrary nonzero virtual dis-
placements éz* , and éd* it follows that

I =0, (4.6)

(4.7)

Here s, and f, are the stress and body force vectors,
respectively, i is the stress tensor, and Eqs. (4.4)
and (4.5) correspond to equations of force equilib-
rium and boundary conditions, respectively. The
constitutive relations are given by Eq. (4.2). It
follows from Eq. (4.6) that the double stress and
double body vectors are zero. We now wish to con-
sider the implications of material indifference on
the form of the constitutive relations. From Egs.
(3.5) and (4.1), this condition is expressed by

(8e/az" )z 4 = 0.

my =

e = g = 0.

(4.8)

Equation (4.8) constitutes a set of three independent
first-order homogeneous partial differential equa-
tions which must be satisfied by the strain energy
function e. Since there are six independent variables
z°,4, Eq. (4.8) possesses three functionally independ-
ent solutions and these may be shown to be given by

(4.9)

Laz = 7' a7° 5.
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It thus follows that for material indifference
€ = G(LAE) (4.10)'

and we recall that L,s has been defined as the first
Love-Kirchhoff deformation tensor.

If we now substitute Eq. (4.2) into Eq. (4.8), the
condition of material indifference is seen to require

iz’ y =0, (4.11)

or equivalently
(4.12)

Taking the tangential and normal components of
Eq. (4.12) results in

iid k&
a'tix s = 0.

&' Ty sty = 0, (4.13a)
e'na’ it} = 0, (4.13b)
where ‘
1 = 7% o + t'n'. (4.14)
Noting that
et = —a*’ea: s, (4.15)

then on using Egs. (4.14), (4.15), and (2.4), we
obtain from Eq. (4.13a)

=0 (4.16)

and from Eq. (4.13b),

1= = 0. 4.17)

Thus the stress tensor ¢}, under the restrictions
imposed by Eqs. (4.1) and (4.8), is a symmetric
surface tensor ¢*°, The equations of equilibrium and
boundary conditions as given by Egs. (4.4) and
(4.5) reduce to the well-known set'*

tf s+ vf* =0, (4.18a)
bast™ + vf = 0, (4.18b)

and
s =1t"%, §=0 (4.19)

where s* = s®2* , 4 sn*.
The constitutive relations, from Eqgs. (4.2), (4.9),
and (4.10), are given by

taB = 27(85/8LA z)ua'Auﬁ.z, (4.20)

where ¢ is regarded as a function of the four com-
ponents of L,z treated as independent variables
under the restriction that

éAz(aE/aLAz) = O, (4.21)

Eqgs. (4.9), (4.17), (4.18), (4.19), (4.20), and (4.21)
comprise the basic equations of membrane surface
theory.
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If the material is isotropic at every point, then
since the intrinsic surface geometry in the neighbor-
hood of an arbitrary point may be regarded as
locally Euclidean,'® the strain energy function will
at every point be a function of the basic invariants
of L,z. We have, therefore;

e = eI, IT,). (4.22)

From Eqs. (4.20), {4.22), (2.18), and (2.19), the
constitutive equations for an isotropic surface may
be reduced to the form

to = 27[ 3T R s “’], (4.23)

61]

where

I = Ay ol p, TP, =85, (4.24)
and 1,z is given by Eq. (2.15). Equation (4.23) may
be regarded as the simple two-dimensional analog
of Finger’s relations.”

Since the assumption of an elastic material pre-
supposes the existence of a natural state, then in
the special case when this state is stress-free, the
expressions for the constitutive relations given by
Eqs. (4.20) and (4.23) will be subject to the con-
ditions

(aé/aLAr)o = 0
for the anisotropic case, and

(aé/aIL)o + (ae/GIIL)o = 0

for the isotropic case, where the subscript 0 indieates
that the derivatives are evaluated in the natural
state.

5. A BENDING THEORY

In this section, the principle of virtual work is
utilized under the assumption that the strain energy
function depends on z' , and z’,45;. In order to
allow arbitrary virtual displacements, the principle
is suitably modified to include certain kinematie
constraints.

We have, therefore,

6.1

‘where the kinematic variables z°, 4, °,45 are subject
to the constraints imposed by the surface geometry
and given by

€= é@«“.A; xifAE):

(5.2)

"The constraints expressed by Eq. (5.2) are intro-

16 J. L. Synge and A. Schild, Tensor Calculus (The Uni=
-versity of Toronto, Toronto, Oa.nada,, 1949).

(4 (1
T AT sz = 0.
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duced into the principle of virtual work by writing
the variation de in the form

o Je H Je i
de = (927'._,; oz",a + -613«‘./_/:2 3z /a2

+ X7 32", a7"/20), (5.3

X22T is an arbitrary surface tensor which is

where

symmetric in the last two indices, i.e., X**T = X4TZ%,
If we set

ty = v(9¢/0z" ' 4, (5.4)

By = v(0e/ox* an)u’ su” 3, (5.5)

1 = bR, (5.6)

then from Egs. (3.1), (3.8), and (3.8), the principle
of virtual work may be reduced to the form

35 Lo — (& + v} o2*

{ (_ﬂv + xk_)‘xxﬂ')v,} 6$k|p + 3 o dk] de
+ [ U@ + Prda + b o0+ (G + 2 8.0

+ ¥R} 82"+ 78 8dY de = 0 6.9

For arbitrary variations 6z%, 82° 5, and 4%, we find
that on ¢

s = (& + Pnovs, (5.82)
e = (B + 'K, (5.8b)
P =0, (5.8¢)
and in 8
&+ ')« +9f =0,  (5.9a)
(B + m ).+ vl =0,  (5.90)
@ = 0. (5.9¢0)

Equations (5.8) express the boundary conditions,
Eqs. (5.9) the equations of equilibrium.
If we multiply Eq. (5.9b) by 2/, ., we obtain

(e + 2 N0 o ¥l . =0 (5.10)

and this expresses the equilibrium of the double
forces as defined in See. 3. The double stresses are
given by the quantities (z2" -+ x:.sA°*)z’,.. The
part of Eq. (5.10) which is antisymmetric in % and
j is the equation of moment equilibrium, i.e.,

@ + 2N, 2" o + vl . = 0.

We note that the quantities gf“z’ . have energetic
significance by virtue of Eq. (5.5), whereas the
quantities 2, ,\°*"z’ , are double stresses which are
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undetermined in terms of the strain energy function.

We recall that ¢ when specified by Eq. (5.1),
must satisfy the condition of material indifference
expressed by Eq. (3.5), i.e.,

(ae/a:c“,A)x“,A + (ae/ax[",u)x“,“ = 0. (5.11)

If we regard z°,»z as constituting 12 independent
variables, ¢ must be further subject to the con-
straining equations

ae/ax‘,u = ae/ax‘,u. (5.12)

Equations (5.11) and (5.12) comprise a set of six
independent first-order homogeneous partial dif-
ferential equations in the 18 independent variables
z* 5 and z°,45. There are, therefore, 12 functionally
independent solutions of this set given by
Ly = z° a2’ 3;

(5.13)

i i 8
Kuyz = 0’2 a5, Cazr = 2" 42"/ -

The scalar function e must be expressible in terms
of these solutions which are, however, subject to
the geometrical constraints of Eq. (5.2),1.e., Cazr=0.
It follows that e is expressible in terms of the Love-
Kirchhoff tensors L and K, i.e.,

€ = E(LAz, KAz). (514)

On substituting Egs. (5.4) and (5.5) into Eq. (5.11),
the condition of material indifference requires

(5.15)

Decomposing Eq. (5.15) into its surface representa-
tion yields

it k& —ida k
&l 2 8 el % 50 = 0.

k48 i R s
ek’ 42" st ez’ bR =0,
e.-,-m'xk,ptip = 0.

These equations lead at once to the following
results:

= buwﬁ’a’: (5'16)

1 =0, (5.17)

when we use the surface representation of ¢'* as
given by Eq. (4.14) and that of z**° given by

ale k

g = p*2t . + Bt

We note that Eq. (5.16) has the same form as
Eq. (6.6). Moreover, from Eqs. (5.4), (5.5), and
(5.14) there follows immediately

=g =0. (5.18)

If we now take the surface decomposition of Eq.
(5.9) and use the results of Eq. (5.18), we obtain
the equations of force equilibrium in the form

H. COHEN AND C. N. DeSILVA

e, — 1t +4f =0, (5.19a)
1% o + bgat® +4f = 0. (5.19b)

The corresponding boundary conditions from Eq.
(5.8a), are
s = %%y, (5.20a)

s = 1%,. (5.20b)

Similarly taking the surface decomposition of the
skew symmetric part of Eq. (5.10) leads to the
equation of moment equilibrium in the form

3asﬁh.u - 2ea6b1aX”710 +eql + 'ye‘,,? =0, (5.21a)
eah " . + easbfB™ + veusl® = 0. (5.21b)

The symmetric part of Eq. (5.10) yields
EGLI SCPU LIy U (5.22)

The corresponding boundary conditions from Eg.
(5.8b) are

e = g%, (5.23a)
n*’ = X*%%,, (5.23b)

where the surface representation of 7" is given by
Eq. (A5). Equations (5.19) correspond to the equa-
tions of force equilibrium given by Ericksen and
Truesdell* with ¢'*#' = 0. As shown in the Appendix,
Eq. (5.21) may also be brought into correspondence
with the equations of moment equilibrium of Ref, 4
[Eqs. (26.8) and (26.9) p. 320]. Equation (5.22)
corresponds to equilibrium of double stresses without
moment and is new.

The quantities X**” may be interpreted as reac-
tions which force the surface to conform to the
kinematic constraints. Since these constraints do no
work during deformation, they are undetermined
by the strain energy function. It is apparent from
the arbitrariness of the variations considered, that
these constraints prevent the surface base vectors
z* , from deforming in a manner other than that
given by the surface mapping. The quantities X**”
then correspond to forces which resist the deforma-
tion of the base vectors and define not only couples
but also new mechanical quantities whose equilib-
rium is expressed by Eq. (5.22). If we write

RO = ReMY 4 Xl""”, (5.24)

then from the interpretation of Eq. (5.21) as an equa-~
tion of moment equilibrium, following Mindlin,*®
X7 may be interpreted as double stresses with
moment, X‘*”” ag double stresses without moment.

The constitutive equations relating the nonzero
components ¢**, g°° of the stress and the couple
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stress tensors, respectively, to the deformation tensors
are, from Egs. (5.4), (5.5), (5.13), and (5.14), given
by

= 2y(d¢/Laz)u”, 20’ 3, (5.25)

B*? = 2y(3¢/aK az)u a0 3, (5.26)

where ¢ is regarded as a function of the four com-
ponents of Laz, and K,3, respectively, treated as
independent variables under the restriction that

EAZ ae/BLAg = €Az ae/aKAz = 0. (5.27)

The constitutive Eqgs. (5.25) and (5.26) may also be
subject to the condition that they vanish in the
undeformed or natural state.

In the previous section it was argued that ¢ would
be a form-invariant function of L,y and hence a
function of the invariants of L,y if the material was
assumed initially isotropic. The success of the argu-
ment depends upon making the surface metric in
the undeformed state an isofropic tensor at any
point. This argument fails when considering the
second fundamental tensor since, in general, it will
depend on the direction of the coordinate axes
chosen at the point in question. Hence, the assump-
tion of material isotropy will, in general, require that

= E(Léz, ng). (5.28)

In certain special cases such as the plane and sphere,
however, the second fundamental tensor is independ-
ent of coordinates and e will be a form invariant
function of Lsy and K,z. We can, however, define
our surface as isotropic if ¢ is a form-invariant
function of L,y and K,3. Rivlin'’" has shown that
for two symmetric second-order tensors there are
five basic invariants. Four of these, Iz, [, Ix, Ik,
have been defined previously by Egs. (2.18), (2.19),
(2.20), and (2.21). The fifth invariant, I, is given
by

R = AAEAQPLAPKEQ. (5.29)

For this special case of “surface isotropy”, the con-
stitutive relations (5.25) and (5.26) become

2"[&1 U+ I g o

J¢

+ ol x

b,,,,l“""l‘”"], (5.30)
af - -3af -1a8
R [aIx U e g azzx b

Je ~loa —losﬁ]
+ el T (53D
17 R. 8. Rivlin, J. Ratl. Mech. Anal. 4, 681 (1955).
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where
b1*Ph,, = 82, (5.32)

Equation (5.30) may be regarded as the R, analog
of Finger's relations. For a simple material, Eq.
(5.30) reduces to Eq. (4.23).

In summary, then, the field equations of the bend-
ing theory of surfaces are given by Egs. (5.19),
(5.21), and (5.22). The stress boundary conditions
are given by Eqgs. (5.20) and (5.23). The general
constitutive relations are given by Egs. (5.25) and
(5.26). For the case of “surface isotropy” as de-
fined, the constitutive relations are replaced by
Eqs. (5.30) and (5.31).

APPENDIX

A couple stress vector m* and body couple vector
I’ are axial vectors which can be represented by
equivalent skew symmetric tensors ‘' and I/,
This dual representation is given by

& im,, (A1)
m‘ == e.-;;,m“’, (A2)

with similar expressions relating I° and I'. If we
define

2w =

w' = P! (A3)
and set
m' = m°z* . + mn', (A4)
e = mxt s + mon’, (A5)
then from Eq. (A2), using Eqgs. (2.4) and (4.15),
we find
Mo = eﬁama’ (Aﬁ)
m = eaﬁ?ﬁua- (‘A‘7)

Similarly, the skew-symmetric couple stress tens_or
g'**fz! . corresponds to a second-order tensor u'®.
Relations analogous to Eqgs. (A6) and (A7) are, when

we set u** = u"°z’ 5 + uon’,
B = €apll", (A8)
B = eam™. (A9)
If z*# = 0, then from Eq. (A9), the normal com-

ponent of the couple stress tensor u* = u*n’ = 0.
If in Eq. (5.21), we use relations of the form
given by Eqgs. (A8) and (A9) as well as the identity

2e,abg.,i“"” - 6,‘;67,5{[’””, (A].O)

we obtain the equations of moment equilibrium in
the conventional form*** (with ¢'**' = 0)

B.a = bﬂa)‘a -+ 3ﬂaza + '7ZB =0,
Ao+ Baps + vl =0.

(A1)
(A12)
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The method proposed by Choh and Uhlenbeck to deal with kinetic phenomena in dense gases is
generalized to all orders in the density. The set of integral equations for the functions defining the
transport coefficients is derived. It is shown that the thermal conductivity and the shear viscosity
are independent of the way in which the local temperature is introduced, namely, through the kinetic
energy and through the total energy density. However, the bulk viscosity does depend on the partic-
ular definition of temperature. The relationship between the corresponding bulk viscosities is explicitly

obtained.

INTRODUCTION

N a recent paper' we derived the first order in
the density corrections to the transport coeffi-
cients of a moderately dense gas using a method
which starts from a generalized Boltzmann equation
which is valid to all orders in the density, and fol-
lowing Choh,” we have defined the temperature of
the system through the kinetic energy only. Also,
we derived an inhomogeneous linear integral equa-
tion for the perturbation function ¢.(p) which de-
seribes the local nonequilibrium state of the system,
linear in the macroscopic gradients. This equation
is valid to all orders in the density; in fact, it is in-
dependent of the existence of an expansion in powers
series in the density of the two body distribution
functional, which is contained in the equation. Fur-
thermore, we assumed that such an expansion exists,
but we restricted ourselves to discuss the solu-
tion up to the term linear in the density. In this
paper, we want to consider the full integral equa-
tion for ¢,(p) and, therefore, to extend to all orders
in the density the results of Choh. This is interest-
ing from the point of view of finding out how the
temperature definition can affect the values of the
transport coefficients for such a system.

In Sec. I of this paper we very briefly sketch
how the integral equation for the perturbation funec-
tion ¢, (p) was derived in I. In Sec. II we discuss the
structure of the solution for such an equation, to-
gether with the subsidiary conditions that it must
satisfy. Finally, in Sec. III we discuss the nature
of the transport coefficients obtained with this
solution.

* Comisién Nacional de Energia Nuclear.
1 Becario del Instituto Nacional de la Investigacién
Cientffica.
. 'L, B. Garcia-Colin and A. Flores, Physica (to be pub-
lished); we here after refer to this paper as I.
(1925% T. Choh, Ph.D. dissertation, University of Michigan

1. THE NONEQUILIBRIUM STATE

The main steps leading to the definition of a non-~
equilibrium state linear in the macroscopic gradients,
for a gas which is assumed to be composed of N
molecules enclosed in a container of volume V and
interacting among themselves via short-range re-
pulsive forces, in the absence of any external forces
except that exerted by the walls of the container,
may be summarized as follows:

First, a generalized Boltzmann equation based
on the assumption that all molecular distribution
functions of order higher than the first, are time-
independent functionals of the one particle distribu-
tion function, is established.? This equation which
depends on the nonlocal two-body distribution func-
tional, iz approximated to include only those effects
which are linear in the gradients,

The resulting equation reads

fy P o _ ]
.ait_ n ;7..%.-5% = 3z, | 1(@)]

+ [ @ ¥, 1@l - 0-(2) @

where z, = (q, p) and
oz, | @] = [ dza Ouhles, 22 | £@), (12)

falzy, 22 | f.(q)] being the two-particle distribution

functional evaluated for a local one-particle dis-

tribution function f,(q, £) and
- 3¢(r12) . a4

0y = aq  9p +

3(r12) . K5

30, 0p. 1.3)

¢(r;2) being the intermolecular potential and r,, =
g — q]. [We omit writing explicitly the time de-

3 L. 8, Garefa-Colin, M. 8. Green, and F. Chaos, Physica
(to be published).
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pendence of f, in all expressions. Also, fi(q, ) =
f1(q, p’’; t) were p”’ indicates that the momentum
is not fixed.]

In Eq. (1.1) @[z, 2’ | fi(q)] is the functional
derivative of ® defined in Eq. (1.2) taken at a point
Z’ = (q,” p’) and evaluate for a local f,(q, ©).

Secondly, without introducing any assumption
about the existence of a power series expansion
in the density for f,(x,, 2, | f.(q)], we proceed to
solve Eq. (1.1) in the hydrodynamical stage for the
gas. This stage is defined by assuming that f, is
now a time-independent functional of the thermo-
.dynamic variables specifying the local equilibrium
or nonperturbed state for the gas. These variables
are chosen to be the local average particle density
n(q, t), the hydrodynamic velocity u(q, t) and the
local temperature 6(g, £). Thus,

hz,, §) = filz: [ n(q, ), u(q, 0, 6(q, 8)]. (1.4)

The solution seeked is expressed, following the
Chapman-Enskog method,® as a power series in a
uniformity parameter which we call u. This pa-
rameter is a measure of the macroscopic gradients
in the system. Since we are dealing with a linear
theory,

ho=H" + ufi®, (1.5)

where £ is the single-particle distribution funec-
tion describing the nonperturbed state of the gas
and f{" is the function describing its perturbed
state linear in the gradients.

Finally, one proceeds to determine f” and f{¥
substituting Eq. (1.5) back into Eq. (1.1). The non-
perturbed state is found to be defined by a local
Maxwellian distribution function with five arbitrary
parameters. However, since we want to describe
such a state through local thermodynamics, one
identifies these five parameters with the five thermo-
dynamic quantities », u, and 6 which are defined
through the following relationships:

n@, ) = [ 1 dp, (1.6a)
ug, ) =1[1o2a b
motg, 0 = [ 1@,  (160)

where p = p — mu is the thermal momentum and
19 = n(2rm6) "t exp (—p*/2mb).

Therefore, the time rate of change of these vari-
ables needed to evaluate 9f{”/at are given by the
hydrodynamic equations linear in the gradients, i.e.,
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Euler’s equations. These equations are'
on/ot = —div (nu), (1.7a)
du/dt = —(1/nm) grad # — u-grad u, (1.7b)
3n(06/9t) = —3%nu-grad 6
— (r — ") divu + R{"(q | {7, (1.7¢)

where = is the local equilibrium pressure and C’‘”
and B (q | {{”) are given by

X [ @ file, 7, 2 | K@U @)W @ o
RO@| 1) = [[ dp s, 2.2 B)
X [ 4o’ fiws, 20 0 | FO@IC@). (18b)

The determination of £ is now a matter of
tedious algebra and it is given in I. The result is
the following one, namely (the index % is introduced
to distinguish our results from those obtained in
Ref. 3. This distinction was not made in I),

1i'®) = fi"®exp), (1.9)

where ¢,(p) satisfies the following linear inhomo-
geneous integral equation

61n0

G.(p):—— + Aulp) : + Bi(p) divu

= [ @l p | HO@UC @)

nz (0) a¢ (p2 — )
o) f dp Az, 505

3m m

.

x [ @ il 7, = | FOQ@QUC@I@), (110
where
Gi(p) = f:” " (2m0 - g - 'r%)

~ [ ¥, 2 | Q@10 — 1)

X <2‘::0 - g) dz’, (1.11a)
Ap) = 1" 5}; %

X [ @, o | {O@IS"S10@) d,  (L11b)
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and
B (p) = (O)L — _1__
k 1 * 30
X [ ¥le, o | 1O@W @ ~ Q@) da,
(1.11¢)
where
B8 = «k(dx/a0),, K= n“‘(an/aw),, (1.12)
PP=ypp—1% (1.13)

=1 — (v/3m6)][(x — no — C’“”)/no], (1.14)

I being the unit tensor, and $°S is the symmetric
traceless part of the tensor p’'(q¢" — q).

The subsidiary conditions which ¢,(p) must obey
follow directly from the general definition of n, u,
and 6° plus Eqgs. (1.6). One finds indeed that

1
| H ©@)eur) dp = 0.

p

We now proceed to solve Eq. (1.10) subject to the
conditions given by (1.15) without resorting to any
density expansion.

II. THE SOLUTION TO THE INTEGRAL EQUATION

(1.15)

The integral equation satisfied by the perturba-
tion function ¢,(p) describing the nonequilibrium
state of the gas, linear in the gradients, is given
by Eq. (1.10). Except for the second term in the
right-hand side, this equation is similar to the one
discussed by Garcia-Colin, Green and Chaos® in
their treatment of the same problem. (We here after
refer to this paper as I1.) Therefore, we proceed to
solve Eq. (1.10) in a rather intuitive way. In fact,
we postulate a form for the perturbation function
¢x(p) and then show that the resulting equation
actually obeys the solubility conditions. Then let

%(p) = gk(pl)p 9 ln 0

+ Gup)PP : % + Gp) dive.  (2.1)
Substituting Eq. (2.1) into Eq. (1.10) and noticing
that the last term in the right-hand side vanishes
for the first two terms of Eq. (2.1), due to the
isotropy of the fluid, we get the following equations

for the functions G, @,, and ®,:

& = [ @l v | FQ@IC @)W d,
(2.2a)
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a@ = [ @, p | QIO @)aE PP d,

(2.2b)
B = [ ¥o, v | £0Q@UC @) df
12 a¢( )
+ (1= g 55 [f ap
x [ @' iz 20 ¥ | QU@ @20

Egs. (2.2a) and (2.2b) are identical to the cor-
responding ones derived in II for the coefficients of
the temperature and velocity gradients, respectively.
Therefore, these equations satisfy the following prop-
erties:

(1). The right eigenfunctions with eigenvalue zero
for the kernel &[z,, p’ | £ (Q)]f{” (p’) are 1, p’, and p".

(ii). The left eigenfunctions with zero eigen-
value of this kernel are 1, p, and E’[z’ | £{*(q)),
i.e., the functional derivative of the total energy
evaluated for a local Maxwellian distribution func-
tion £, (q).

(iii). These left eigenfunctions with zero eigen-
value are orthogonal to the inhomogeneous parts
of the equations.

These properties, which are proved in Appendix
B of 11, establish the existence of a solution of these
integral equations and also, they show that the
kernel is not a symmetric one.

However, Eq. (2.2¢) is not the same as the cor-
responding equation in II for the coefficient of the
divergence of u. This equation is given by

Lf;"(p)

~ 35| ¥ 2 1 FOQW @ ~ Of0@) &’
= [ ¥k, v | £°Q@IC0E0) d, @.3)
where
= [F/3m0) — 1I[L — §@/neC],  (@4)

C, being the specific heat per particle and 8 and «
being defined in Eq. (1.12). Comparing Egs. (2.3)
and (2.2¢), we find that they differ in their inhomo-
geneous parts since L, is not equal to L, and also,
the second term in the homogeneous part of Eq.
(2.2¢) is missing from Eq. (2.3). Nevertheless, it is
still possible to show that Eq. (2.2¢) satisfies prop-
erties similar to (i), (i), and (iii), mentioned above.
To do so we first cast the second term in the right-
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hand side of (2.2¢) into another form. (The authors
are indebted to Dr. M, H. Ernst for enlightening cor-
respondence on this point.) Since f}[xy, z2, p’ | 7{%(q)]
is symmetric in z; and x,, i.e., it does not change
under a permutation of the coordinates of particles
1 and 2, and also, since r = ¢, — q,

(86/8Q)+ (P — p) = (3¢/0r)(® — P2)

is also symmetric under this permutation. We thus
have that

f dp dxz (pz -»
X [ d file, 2, ¥ | K@U @S
P 96 9

_—ffddeZm ar dp

X [ dp filzy, 7, 0’ | FO@UO@®E)  25)

after a partial integration with respect to p is
performed. Furthermore,

x [ a e, 7,0’ | HPQIC@)®E) = 0,

2m or apz
so that adding this equation to Eq. (2.5) and using
Eq. (1.3), one gets that the left-hand side of Eq.
(2.5) equals

[ [ ek, y | P@ @) &, @6

where use has been made of Eq. (1.2).
Using Eq. (2.6) we may write (2.2¢) in the desired
form, namely,

B@) = [ @l » | £ @H@)8.0) dp’

+( 3120) s fdp

x [ @, v | @I e )®me) &, @)

It is now a trivial matter to show that Eq. (2.7)
has 1, p, and p* as both left and right eigenfunctions
with zero eigenvalue. Also, one may verify that these
functions are also orthogonal to the inhomogeneous
part B,(p). Therefore, the solubility conditions for
Eq. (2.2¢) or (2.7) are satisfied although they are
not the same ones that those for Egs. (2.2a), (2.2b),
and (2.3). In fact the kernel of Eq. (2.7) 7s sym-
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metric, whereas the kernel for the other equations
is not.

Having established the existence of a solution
to Eq.-(1.10), namely, that expressed by Eq. (2.1),
we must assure its uniqueness. In fact, since this
solution is determined up to an arbitrary linear
combination of the solutions to the homogeneous
equation, say, a; + ep + a3p°, we still have to
determine the five arbitrary constants «;, ,, and as.
This is accomplished through the five subsidiary
conditions which ¢.(p) has to satisfy, defined by Eq.
(1.15). Substituting ¢, into these equations, we find
that Eq. (2.1) is unique if the functions G, and
®, satisfy the following conditions, namely,

[ 810 ap = o,

[ {EDho@ a = o

with no condition imposed upon @.(p). Egs. (2.1)
together with Eqs. (2.8) and (2.9) determine ¢.(p)
uniquely, and this function can now be used to
caleulate the transport coefficients for the gas.

2.8)

(2.9)

III. THE TRANSPORT COEFFICIENTS

The calculation of the transport coefficients for
the gas proceeds in the usual way. One simply
substitutes Eqgs. (1.5), (1.9), and (2.1) into the well
known expressions for the fluxes (heat current and
stress tensor) for the system. This substitution has
already been undertaken in II so that we shall not
repeat it here. Furthermore, since the integral equa-
tions defining the functions G, and @, are identical
to those obtained in IT and since these functions
determine the thermal conductivity and the shear
viscosity, respectively, the expressions for these
transport coefficients are those quoted in that paper.

Thus we see that different temperature definitions
will give rise to different expressions for the bulk
viscosity. This coefficient may be calculated with
oi(p) following exactly the same procedure as in
I1, the result being

m=— [ dp n’f:‘”(p){(g‘ig;}
+ —é f dxz dP 'Yd’,(r) f dp, ﬁ[xh T2, p’ l flw)(q)]
X f{"’(p'){(ggg} + 2= [[ dea dp roe)

X [ d' film, o, | EO@UC@W @ — 9, B.D)
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where the value of 7, calculated with ®(p) cor-
responds to a local temperature defined through
the energy density, as in I1, and the value calculated
with ®,(p) corresponds to the kinetic temperature.

It is interesting to compare what the difference is
between the integral equations (2.2¢) and (2.3),
together with the subsidiary conditions for the
functions ®:(p) and ®(p).* This will allow us to
establish the difference between the corresponding
bulk viscosities. In the first place, one can show that
the two integral equations are equivalent.* By this
we mean that a particular solution of one of them
is also a solution to the second one. This is shown
in the Appendix. Therefore, we may conclude that
the two bulk viscosities will be different because the
functions ®, and ® satisfy different subsidiary condi-
tions. In fact, both functions satisfy Eq. (2.8) but
only ®, satisfies Eq. (2.9). The corresponding condi-
tion for ®(p) is given by

[ &, p | 1@ @) dp
= —%3 ff dp dx, ¢(r)

X [ do’ filas, 72, 2" | £@)]
X 9@ — Qf"®).

Further more, since the two integral equations are
equivalent, the solutions will differ at most by a
linear combination of the solutions to their homo-
geneous parts. Thus

(B(_'p) = (Bk(P) +C + C.-p
+ [(¥°/2m6) — 31(C+/0).  (3.3)

Since both ®(p) and ®,(p) satisfy Eq. (2.8) and
because of the scalar character of ®(p), we im-
mediately find that C, = 0, C, = 0. To determine
C; we subsitute ®(p) into Eq. (3.3) and find the
following result, namely,

Cs = —n(36/98), T},

(3.2)

(3.4)

where
r = [ &0, v 0@ @) dp

+ [ 10,2 110 P L =D o 4. 3.5)

Therefore

* M. H. Ernst, “Temperature Definitions and Transport
Coefficients,” Preprlnt

L. 8. GARCIA-COLIN AND A. FLORES

&u(p) — [(1*/2m6%) — (3/26)In(96/3&), T4,
(3.6)

where we have called € = g[q | f{”(q)] [c.f., Eqgs.
(3.7¢) and (3.11c) of II].

Substituting this result back into Eq. (3.1) and
calling 5, and 5{® the values for the bulk viscosity
as computed with ®(p) and ®,(p), respectively, we
finally get that

7, = 03" — TY(3r/38'"),, (3.7

which is the desired relationship between the two
viscosities. This relationship has also been derived
by Ernst.*®

In conclusion, we may state that the integral
equations defining the bulk viscosity are equiv-
alent for the two different definitions of temperature,
but the bulk viscosities differ themselves in the way
indicated by Eq. (3.7). There is still the question of
analyzing which temperature definition is the cor-
rect one but this will be done elsewhere.

®(p) =
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APPENDIX

We want to show that if ®(p) is a solution of
the integral equation (2.3) then it also satisfies
Eq. (2.2¢). Let us then substitute ®.(p) by ®(p)
in this equation. Making use of the fact that G(p)
is also a solution to Eq. (2.3), we get the following
relationship:

Bi(p) = Lﬁm(p) - 25

X [ ¥z, o | (@I @ ~ Q@) &’

_ n_) o a¢ v =9
+ (1 3mo ff dp dxz 2m

Xf@%hmm%W@W@%WL

Using Eqs. (2.6) and (2.3) once more, the last two
terms in the right-hand side of Eq. (A.1) can be
reduced to the following expression:

2 (0)
o) ~ (1 - 55) 55 [ a3
x [ ¥, 2 | 12@) L= o g,

(19:5.%[ H. Ernst, Ph.D. dissertation, University of Amsterdam

(A1)



KINETIC THEORY OF DENSE GASES

where use has been made of Eq. (2.4). Substituting
this result back into Eq. (A1), we find that

-~ e [ gy
D o) da.

x [ @, 2 | @) L= 9
(A2)

To show that Eq. (A2) is an identity, we decompose
2, 2 | {{(q)] in its symmetric and antisym-
metric parts,*

#'[z’, 2" | (@] = @', 2" | 1°(@)]
+ &, 2" | £2@],  (A3)

their explicit form being given in Ref. 4. There, it
is also shown that

f(O)

f q,:[xl’ 2! ‘ fx(O)(Q)] p//,(qn - Q) fl(O)(p") dz'’

- T — nd n ) (0) 7, 7
- ( nd )(3m0 1))
On the other hand, using Eq. (1.8a), the fact that
(0¢/0q)+(p, — p) is invariant under the exchange

(A4)
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of indices for particles 1 and 2, and an argument

similar to the one leading to Eq. (2.6), it is easy
to show that

o = [ 2 [ 2w, | 1]

rola! —
X ” (q30 Q) fl(o)(pr) dz’. (As)
Using Egs. (A4) and (A5), we get that
Ly = [1 — (v"/3mO)][(x — no — C"“)/n0]f",
(A6)
where use has been made of the identity
(0) p?
[ aow X (3m0 1) —no.  (A)

Comparing Eqs. (A6) and (1.14), the definition of
L,, we get that indeed this relationship is an identity
and therefore, B(p) is a solution to Eq. (2.2¢).
Following a similar argument one can show that
®:(p) is also a solution to Eq. (2.3), thus proving
the equivalence between the two integral equations.
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It is shown that a quantal or classical system of N ps.rtxcles of distinet species o, § = 1, 2,
interacting through pair potentisls p.s(r) are stable, in the sense that the total energy is always
bounded below by ~NB, provided p,4(r) exceeds some ¢,5®(r) whose Fourier transform eqs(p) corre-
sponds to a posmve sexmdeﬁmte u X u matrix for all p.

This result is applied to discuss “‘charged’’ systems and stability is proved for Coulomb interactions
if the charges are somewhat smeared rather than concentrated at points. For a large class of potentials
it is shown that classical instability implies quantum instability in the case of bosons and, in three or
more dimensions, also of fermions. Quantum systems with Coulomb interactions (point charges)
are discussed and it is shown in particular that their stability cannot depend on the ratios between

the masses of the particles.

I. INTRODUCTION

ONSIDER a classical system of N particles in a

»~dimensional space with total potential energy

Uy = Ux(r, --- 1y), where 1, is the position vector

of the ¢-th particle. In order that the system behave

thermodynamically in the limit N — <« it is natural

to ask that the total configurational energy satisfy
the stability condition

UN(rl ces

for all sets of r;, where B is a fixed bound. (Otherwise
the energy per particle in the thermodynamic limit
might not be bounded below.) With the aid of
this condition, a further condition on the potentials
at large particle separations and suitable restrictions
on the shapes of domain containing the system,
one can prove rigorously the existence of the
thermodynamic limit for the canonical and grand
canonical partition funetions for both eclassical
and quantum mechanical systems.'™®

Suppose the particles interact only through a
pair potential ¢(r) so that

Uy = Z olr; — 1),
i<i

ry) > —NB (1.1)

(1.2)

It has then been shown'™® that stability is assured
if the following conditions are satisfied:

(A) The pair potential can be decomposed as
o(n) = (@) + () (13)

where ¢ (r) may take the value + o but is non-
negative, that is,

* On leave from Wheatstone Physics Laboratory, King's
College, London W.C.2, England.

1 D. Ruelle, Helv. Phys Acta 36, 183 (1963).

2 D, Ruelle, Helv. Phys. Acta 36 789 (1963).

# M. B, Fisher, Arch. Rat. Mech, Anal. 17, 377 (1964).

eP@) >0 (1.4)

and

o0 = [dpeeP@,  (15)
where the Fourier transform ¢ (p) is (absolutely)
integrable and satisfies

#“() 20, (1.6)

so that, in other words, ¢ (r) is of positive type.

With the aid of this theorem one can show®™*
that the following simple conditions are sufficient
for stability:

(B) for r < a, o(r) > O/, xn
for a <r<a oft) > —w, (1.8)
for r> a; o(r) 2 —C'/r", (1.9

where a,, a,, C, ¢, w, C’, and ¢ are positive constants.

More recently, Dobrushin® has shown by an
independent method that the following closely
related but more general conditions, are also suf-
ficient for stability:

(C) there are monoctonic decreasing functions
£(r) and 5(r) such that for

r<a, off) 2, (1.10)
while
f ‘&'(r)r’“‘ dr= 4o, (1.11)
o
for o <r<a, off)>—w; (L12)
for r > G (l') > “’7(")!

4 D. Ruelle, Lectures in Theoretical Physies, Vol. VI,
Boulder 1963, pp. 93-95 (University of Colorado Press, 964)
(196% . Dob rushin, Th. Prob. Appl. (US.S.R.) 9, 646
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while

f Wy ldr < o,

as

(1.13)

Dobrushin’s proof is rather involved (and proceeds
through a complicated inequality) so in Appendix A
we present a proof of the sufficiency of conditions
(C) which shows that they are, in fact, encompassed
by the conditions (A).

Our main purpose in this paper, however, is
to extend the conditions (A) to systems in which
species of different particles interact with one another
or in which the pair potentials depend on some
internal—for example, orientational-—coordinates.
The principal result is to replace the nonnegativity
of the Fourier transform ¢(p), Eq. (I1.6), by the
positive-semidefiniteness of a corresponding stabzlity
matric ®(p) = @.e(p). This theorem is applied
to the discussion of charged systems interacting
through Coulomb and more general forces. We
show that such a system is stable if the charges
are slightly “smeared” by some not too singular dis-
tribution, for example by & Yukawa-type function,
or if the potential is cut off in some more drastic
way at small r.

For quantum mechanical systems it seems likely
that when account is taken of kinetic energy T,
stability in the sense

(RN) = ((TIV + UN)) > —NB (1-14)

would be attained with purely Coulomb inter-
actions. We have been unable to solve this challenging
problem but we make some remarks on the relation
between the stability of classical and quantal
systems. We also show that the long-range part of
the Coulomb potential does not cause instability
and that stability cannot depend on the mass
ratios of the differently charged species (as might
perhaps be suggested by the “‘observed stability”
of a system of hydrogen or deuterium atoms and
the large ratio of nucleon to electron mass).

II. MULTISPECIES SYSTEMS

Consider a system of N particles made up of p

different species with N, particles of species 1, -+« N,
particles of species «, ete., so that
N1+Na+"'+N,‘=N. (II.2)

Let the position of the 7th particle of species «
be r;(a [{{@) = 1, 2, --- N,] and suppose that
the total configurational energy is given by
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Un(tier *** Twum)
B CI"ZI C(ag(a) ¢“¢(ri(°) - r"("))
+ 5_‘4 2 2 PuTion — Taw)  (IL2)

a<f i(a) §(8)

in which ¢,4(r) is the interaction potential between
a particle of species o and one of species 8 and
may take the value + « as well as all real values.

We will not assume that the functions ¢.s(r)
are rotationally symmetric. For instance we may
suppose that the particles are asymmetric molecules
but that the orientation of each one in space is
held fixed as their positions vary. (Each different
orientation may be considered as a distinct species.)
It is obvious, however, that we should require

©ap(t) = @pa(—T1) (1IL.3)

for all «, 8, and r. Then we have
Theorem I. Let ¢qp(r) = oU}(r) + o25(r) be a

decomposition of the potentials respecting (I1.3), i.e.,
such that

o) = 4x(~1) forall 8,1, (11.4)
and suppose
o%0 = [ do o5 aLs)
where the Fourier transform ¢3(p) is absolutely
integrable.
If o04(r) > 0 for all @, B, r and if the u X pu

matrix ®(p) = [Z3(p)] has no negative eigenvalues

for any value of p then the total potential energy,
defined in (I1.2), satisfies

Un(ticer *** Tvuw) = —3% ZN&(”(O) (11.6)

To prove this theorem notice firstly that the
matrix @ is Hermitian because

$50 = @n [ dr e e B,

and so by (I1.4)

(2)(p) (2‘",) fdl’ e—ipr (2)( I')
(I1.7)
= @0 [ dr e = s
Thus & has real eigenvalues and the statement
that these are never negative is equivalent to the
assertion that the Hermitian quadratic form x'dx,
where x is a u X 1 column vector, is positive-
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semidefinite. Secondly by (IL.5) and the absolute
integrability of #2.(p), it follows that ¢2(0) is
finite for each a.

By definition (2.2) and the assumed positivity

of the potentials o4 5(r) we have

»

Uv > 2,

a=1 i(a)<jila)

+ Z Z Zso(f,)s(fi(a)

a<f i(a) i(8)

¢fx213(ri(a) — Ti(ay)

- rc’(a))

> Wy — 5 3 Neol200) (11.8)
a=1
where
[ » N N
Wa= 2,0 2 2 ot —riw). (I1.9)

a=1 f=1 i(a)=1 §(f)=1

Introducing the Fourier transform through (I1.5)
yields

me=22 x> [a
a=1 f=1 i(a) (8

X exp [ip+(Ti — Ticm)]P (D)

dp 3 | X exp pricer) | 650
[o 2] ]

a=1 f=1 i(a)

X I:(Em €xXp (ip'ri(ﬂ)):l'

On defining the column vector

fi(p) = [

this may be written simply as

I

N

2. exp (ip-r.-m)], (11.10)

f{a)=1

Wy = [ doa@'e@a®.  (IL1D
Since the integrand is a nonnegative quadratic
form for all p we have Wy > 0 and the theorem is
proved.

Remarks. The theorem may obviously be extended
to the case where, in addition to two-body potentials,
Uy contains nonnegative many-body potentials.
The theorem applies even when N, = 1 (all )
so that each particle belongs to a distinet species;
but in that case the “self interaction” potential
@) may be chosen arbitrarily.

III. CHARGED SYSTEMS

Suppose the particles of the system are ‘“‘charged”
so that each particle of species « carries a charge q.,
and the interactions are given by

Pap(T) = qaqex(r) (I11.1)

M. E. FISHER AND D. RUELLE

where x(r) is a fixed “shape factor” satisfying
x(®) = x(—1) (I11.2)

We have principally in mind, of course, Coulomb
systems for which x(r) = 1/r, screened Coulomb
or Yukawa systems with x(r) = ¢ */r, etec. The
charges ¢, may be positive, negative, or zero.
[Complex charges ¢, = g =+ %¢’, may be included
equally if the interactions are taken proportional
to 3(g%gqs + q.9%) = (9igh + ¢lgh’l-

To test the stability of such a system consider
the stability matrix

20 = [¢.05%(p)] (IIL.3)

where £(p) is the Fourier transform of x(r). Since
the rows of the matrix are proportional to one an-
other it may be factorized as

x(®)—0 as r— o,

® = 2(p)gq’ where q =[g.]). (IIL.4)

It follows that ® has one eigenvalue

B
M) = 20) 2 lg.]° and p — 1 zero eigenvalues.
a=1

Consequently the conditions of Theorem I will be
satisfied (with ¢{}’ = 0) if

£ = 2n)” f dre®x(@) >0 all p  (IIL5)

and
x(0) = f dp £(p) < . (111.6)
In that case we have

Ur2 1@ 2 laf. (LD

For the Coulomb and Yukawa potentials in »
dimensions we have

%) = G/,  C/@ +4¥), (IIL8)

respectively, where the C, are constants (C; = ir ™).
When we try to apply the above result we find that
(IIL.5) is satisfied, but that for » > 2 the condition
(I11.6) is violated owing to a divergence of the
integral at the upper limit (p — )° This corre-
sponds, of course, simply to the divergence of the
potential itself as r — 0. Accordingly let us suppose
more generally (and more realistically!) that the
charges are distributed rather than concentrated

¢ For » < 2 the integral (3.6) for the pure Coulomb case
would diverge also at its lower limit owing to the divergence
of the potential as r — « in violation of (3.2). This prevents
the unambiguous determination of the zero of potential
energy and is the reason for restricting attention to potentials
which converge to zero at infinity, however slowly.
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at points. If p,(r) is the charge density of a particle
of the « species with respect to its position as
origin, the interaction between particles becomes

oul®) = [ dx, [ dx, pulx)

X ps(Ee)x(r + x5 — x.).  (11L.9)

We assume that the charge distributions of the
particles are not perturbed by their mutual inter-
action but rather are “frozen’ so that, in particular,
Van der Waals or dispersion forces cannot arise.
Permanent charges (ions) and dipoles are, however,
adequately represented.

Introducing the Fourier transforms of the densities
by

b0 = [dre™ @ (IILIO)

and noting that p.(—p) = p.(p)* since p,(r) is

real, gives

Pas(®) = pa(D)ps(p)*X(p). (II1.11)

We thus, as before, find that the matrix & has
only the single nonzero eigenvalue A, (p) = £(p) X«
|.(p)|°. For stability we require again that £(p)
is nonnegative, but also, in place of (III.6), that

0ee® = [ dp 5. OF2D) < =

which justifies (ITI.11). From Theorem I we then
obtain

(I111.12)

Uy > —> N.E, (111.13)
where
B, = }0.0) = & [ ax [ ax
X pa(X)pa(x)x(x’ — x).  (II1.14)

Evidently E, is just the self-energy of the charge
distribution p,(r) (which might even have zero
total charge). Notice that if x(r) is spherically
symmetric and p,(r) and pg(r) differ only by a
rotation then E, = FE, Furthermore if we add
some positive potentials to the charge interactions,
(I11.13) remains unmodified. Accordingly we have
proved the following result.

Theorem II. Suppose Uy = U’ + UP where
U is positive and USP is the potential energy
of N, particles of species 1 with charge distribution
n(), --- , N, particles of species u with charge
distribution p,(r), where point charges ¢ and ¢’
interact with a pair potential q¢’ x(r) = g¢’ x(—1)
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tending to zero as r — . [If x(r) is spherically
symmetric the distributions p,(r) may be identified
up to a rotation.] Then

Uy(r, -+~ 1y) > — >, NE,

a=1

(I11.15)

provided the self-energy of a particle of species a,
B, = % f dx f dx’ p(®)pa(®)(& — ),

=1 [ & 150" 20, (I1L.16)

where 5,(p) and £(p), are the Fourier transforms of
po(r) and x(r) is finite for all c.

Remark. For pure Coulomb forces another deri-
vation of the theorem is as follows.”® Let ¢(R) be
the (total) electrostatic potential due to a charge
distribution p(R). Then it is well known that the
electrostatic self-energy of p(R) may be expressed
in terms of the electric field & = V¢ since

L e

-1 [mome® 11

and so by Poisson’s equation (taking » = 3)

= ~@™ [ R [VHRBE)
= @™ [ @R [Ve®P,

— @ [ ar e, (I11.18)
Now if ¢.(R) is the electrostatic field due to a
distribution of charge p;(R — r;) centered at r;
we may write, distinguishing between all particles,
1(v2) = E‘P:?)(ri — 1))
i<y

=3 Z 2P ~1) — % '_ 057 (0)
-3 [® [ (2 p® - 1)

X [Z piR —r1)l/|IR" — R‘

N
~ > [ [ spe)/Ix — xl
im1
7 The stability of an electrostatic system seems first to
have been considered by L. Onsager, J. Phys. Chem. 43, 189
(1939) who supposed the particles interacted in addition
with an infinite hard core (see also below).
8 A proof of stability somewhat similar to that presented
IIl)ere has been communicated privately (to M.E.F.) by O.
enrose.



264

and so by (II1.17)
P =@ [ RV T o®T

— > @ [ dx (Ve

fml

= - ZN: (8m)~" f dx [Vé.(x)].

=1

(111.19)

This is just (II1.15) with another expression for
the electrostatic self-energy, namely,

E, = 60" [ @[Vl (11120)

Applications

The condition that the self-energy (III.16) be
finite means physically that the density p.(r) must
be sufficiently ‘‘smooth’” in relation to the shape
factor x(r). It may, nonetheless, be quite singular.
As an example consider the Coulomb potential in
three dimensions. We will show that stability is
assured if the charge is distributed over the surface
of a sphere so that

pa(r) = 0’(0; ¢) 5(7' - a)

where r, 6, and ¢ are polar coordinates, provided
the surface density is bounded, say by ¢, For
by (I11.16)

(111.21)

B < 3 [ ax [ ax o@ ~ a) [o(0, )]
X 8z’ — a) |o(¢, ¢)| |2" — =]

< 1o, [ dx 3z — Q)ut), (II1.22)
where ¢0(x) is simply the potential due to a uniform
surface distribution of total charge 4wa’s, on a
sphere of radius a. This has the finite value 4ra’c,/a
on the sphere so that

E, < 870y, (111.23)

With a surface distribution such as (II1.21) one
may, for example, reproduce outside the sphere
the field of a point dipole. ’

By the same argument it is clear that stability
will be obtained for any volume distribution of
bounded density, vanishing outside a bounded
region. In fact one may even allow singular distri-
butions, such as the Yukawa or its square, pro-
vided the divergence is not worse than 1/|r — r,|°
with 6 < § (or, in » dimensions, § < 3v + 1). This

M. E. FISHER AND D. RUELLE

may be seen by studying the Fourier transforms
for large p. On the other hand it is easily seen that
a linear distribution of charge does not suffice for
stability.

Let us further establish stability for truncated
Coulomb interactions defined (for » = 3) by

Pap(r) = sup (¢ags/[r|, — lge95l/a)  (111.24)

for all a, B, r and some fixed a. A simple example
is provided by supposing the particles have hard
cores of diameter @ in addition to pure Coulomb
interactions.” Consider the Coulomb interaction
Z3(r) between two charges q. and g each distrib-
uted uniformly through a sphere of diameter a
(and hence radius %1a). Since the convolution of
two distributions vanishing outside a sphere of
radius %a, vanishes outside a sphere of radius a,
this interaction satisfies
(2)

oap(® = |gagsl/Ir|, for [t >a (I11.25)

and

(2)

le'as(™| = |gagel/a, for |r| >a.  (I11.26)
Thus we have a stable potential always lying below
the truncated Coulomb potential (III.24) which
is hence also stable.

Finally consider a system of point dipoles inter-
acting through the usual dipole-dipole (or tensor)
forces, namely,

m,-mg

(oaﬁ(r; m,, mﬁ) = P

~ g me)(men) gy oy
7
where m, and my are the dipole moments. The
Fourier transform is
éaﬂ(p; ma: mﬂ) = Ca(ma'p)/lpPr (III'29)
so that, as before, the stability matrix ® will be
nonnegative-definite for all m,, m, As it stands,
however, the self-energy is divergent but we may
clearly obtain a stable system if the dipole moment
m, is distributed with some density u.(r). The
smoothness conditions on u,(r) are, however, more
stringent than on the charge density as is natural
since a distribution p,(r) proportional to the diver-
gence of y(r) will have the same electrostatic field.
A Yukawa distribution of dipole moments would
yield stability but a surface distribution on a sphere
would not.
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IV. QUANTUM MECHANICAL SYSTEMS

For the stability of a quantum mechanical system
of N particles of masses m, it is sufficient to require
only that

(3Cy) = é(h’/2m,~) f |V | dry -+ dry

+fU~(r;

> —NB, (IV.1)

for fixed B and all N-body functions ¥, =
Wy(r, -+ ry) in the domain of 3¢y. (We assume the
wavefunction vanishes on the boundary of the
domain and on any hard cores.?) Since the kinetic
energy is evidently positive for any ¥y the stability
of a classical system, that is the assertion Uy >
—NB for all r; and N, implies the stability of the
corresponding quantal systems. It is of interest
to inquire, however, into potentials that might be
stable for quantum systems of given statistics
while being unstable for classical systems or for
different statistics. In particular, the experimentally
observed stability of systems of electrons and
protons (hydrogen) or electrons and deuterons
(deuterium) suggest strongly that a charged quan-
tum mechanical system should be stable even with
pure Coulomb forces. We take this specific question
up in Sec. 5 and consider firstly the converse general
problem of establishing instability.

For a classical system of identical particles, one
may show that certain potentials are catastrophically
unstable in the sense that for N indefinitely large
there are sets of configurations for which

Uty +++ 1y) < —w*N'™"

where w* and 7 are positive constants, and that the
grand canonical partition function does not exist
(the series being divergent). In particular for pair
interactions this is so if°:

(D) ¢(r) is finite-valued and piecewise contin-
uous,’ and for some k and configuration r; one has

ty) [Oy|* dry - - - dry,

(IV.2)

k k

E Z(D(f,‘ '—r.') < 0.

f=1 jeml

(IV.3)

It is quite straightforward to generalize the proof
of this result’ to a multi-species system provided

? D. Ruelle, Ref. 4 pp. 86-88.

10 At a discontinuity ¢(ro) should be assigned the value
lim sup ¢(r) as r — ro. More generally, see Theorem III, we
only requlre upper semi-continuity which means that for any
g,lan € l> 0 tgere is & & > 0 such that o(r) < ¢(ry) + e

r — ro < 4&.
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that N,/N remains bounded below for all a as
N=Y.,N,> o,
For a quantum mechanical system we may prove,

Theorem III. If the potential energy of a quantum
mechanical system of N identical particles is the
sum of pairwise interactions with potential (r)
which is (i) bounded for large |r|, (ii) finite-valued
upper semicontinuous,'’ and (iii) which for some k
and r{(z = 1, 2, .- - k) satisfies

k k

2 e —1r) = -U, <0,

fm=] jml

(Iv.4)

then for a sufficiently large domain there is a w* > 0
and an N* such that the ground-state energy
satisfies

E(N) £ —w*N* for N > N*, (IV.5)

provided either (a) the particles obey Bose-Einstein

or Boltzmann statistics (and » is arbitrary) or (b)

they obey Fermi-Dirac statistics and » > 3 (or
= 2 and U, is sufficiently large).

Remarks. When the conditions of the theorem
are satisfied it is evident that the canonical free
energy per particle cannot approach a finite thermo-
dynamic limit since, in a diagonal representation,
the canonical partition function contains a term
exp [—BE,(N)] exp (BW*N?). For the same
reason the grand canonical partition function does
not exist.

Notice that for Bose-Einstein and Boltzmann
statistics the theorem is as strong as in the classical
case. For fermions on the other hand the theorem
proves instability for all U, only in three or more
dimensions. In two dimensions the system will be
unstable if U, is sufficiently large [or more generally
if (IV.4) holds as an inequality over a sufficiently
large region of configuration space] but might
perhaps be stable otherwise. Indeed the arguments
in the proof, which depend on the way the total
kinetic energy of a system confined in a domain
increases with N, suggest that one and two-
dimensional Fermi-Dirac systems probably are
stable for certain forces that would be classically
unstable. We have however, not established any
such counterexamples.

Theorem III is proved by constructing a trial
wavefunction ¥y, and hence a variational upper
bound for E,(N), which corresponds to super-
imposing closely many replicas of the configuration
satisfying (IV.4). As in the classical case there

1 See footnote 10.
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are no obstacles to generalizing the results to
multispecies systems if N,/N is bounded below.
The proof occupies the remainder of this section;
the reader uninterested in the technical details
is advised to proceed directly to Sec. V.

Proof. We first observe, following the classical
argument,’ that the function

) = 2 Dot — 1)

i=1 j§=1

U, -+ 151 - (Iv.6)
is upper semicontinuous in the space of the 2kv co-
ordinatesr, = (@4, -+ * Z,) tor] = (@], -+ x4).
Consequently there exists a positive length d and

a set of k cubes I'¢ of edge d; namely

IN: 05z, —20.:<d, (vy=1,2,---%),
(Iv.n

such that

Uty »++,m) < =30,

for r;eT; and riel7. (IV.8)

Now if N = hk 4 c where h is an integer and
0 < ¢ < k, we may write the total potential energy as

Ux % Z ;{Z iso(rm,-

f=1 =1 §=1

- rfk+c')} - %hk(p(O)

c N

+ Z Z o(r;

i=1 i=1

— Tu+;) — ce(0). (1v.9)

If the coordinates of & of the first A k particles lie
within each cube I', that is

0 S x.,_,k.“- - x:"' < d all Y, f, i,

then we have by (IV.6) and (IV.8)
Uy < “%tho — 3hko(0) + Yy,. — ce(0) (IV.11)

where Yy, denotes the penultimate term in (IV.9).
Since ¢(r) is bounded for large |r| there is a distance
a, and a fixed  such that

(IV.10)

le(r)] < =, for (IV.12)

The k cubes I’} are fixed and so in a sufficiently
large domain we can find ¢ further similar cubes
T; (j = 1, -+ ¢) such that if r is in cube T and ¢/
is in any other cube then [r' — r| > a,, i.e., the
mutual distances exceed a,. Let T} be defined by
0<x, —2z,,; <dforally. If we impose

0<$~,u+,'—$7,<d all 'y,]—l

It] > a..

(IV 13)
we therefore have

Yy.. < Nen < Nky. (IV.14)

M. E. FISHER AND D. RUELLE

Thus under conditions (IV.10) and (IV.13) we
may write (for N > k)
¥ < —(N — k)*(Uo/4K")

+ NG e(0)] + kn) + 3k [e(0)],  (IV.15)
which in fact restablishes instability for the classical
case under slightly wider conditions.

Let £, = z, — 25,; or z, — z',,; and consider the

single-particle wavefunction which vanishes outside
the cube T: 0 < £, < d (ally) but is given internally

by
‘plx"‘l'(£17 ot EV)

= @) 1T sin (£, /d)

7=1

(IV.16)

where the [, are positive integers. For this wave-
function the kinetic energy has the expectation
value

o, = B72/2md)0 + -+ + D). (Iv.17)

For the Bose-Einstein and Boltzmann case (a)
now take as a trial wavefunction a product of N
single particle functions yy,.., with A functions
based on each of the cubes I'} and one based on
each of the T'}. For this ¥y we clearly have

(Ty) = NOa*/2md?), (1V.18)

while (Uy) satisfies the inequality (IV.15). By the
variational principle the sum of these terms exceeds
the ground-state energy Eo(V) and so (IV.5) follows.

For the case (b) of Fermi-Dirac statistics we
can allow only totally antisymmetric trial wave
functions. Thus in each cube TI'¢ take h different
¥i1....:, and antisymmetrize the product wave
function with respect to their arguments. (We may
assume the cubes do not overlap.) The expectation
value of Uy will clearly still satisfy (IV.15) but
for the kinetic energy we have

(Ty) = (B*n*/2md>)[kD,(k) + c] (1Iv.19)
where
D) = ,Z_: e |* (IV.20)

in which the 1, are & distinct vectors with positive
integral coordinates. This function will be a mini-
mum when the vectors fill out, to best approxi-
mation the positive 2"-ant of a »-dimensional hyper-
sphere. Let A,L” be the volume of such a hyper-
sphere of radius L and let B,L’** be its moment
of inertia about one axis. If we choose L so that

9 AL = h (I 21)
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then for large k we will have
D,(h) ~ 2B, L’** = 4B, A, VR (IV.22)

Consequently for sufficiently large N there are
positive numbers {; and ¢, depending only on %
and », such that

g.z(hZ/md2)N1+ 2/7)
< ATy < 6B /md)N©™E . (IV.28)

Hence for » > 3 the kinetic energy increases no
faster than N** and so is dominated by the potential
energy which diverges as N° thus proving the
theorem. For » = 2 the kinetic energy increases
as N* and the theorem follows only if

U, > 4K’ ¢(R*/2md’), (Iv.24)

that is if U, is sufficiently large. This completes
the proof.

For » = 1 the method always fails. Indeed since
(IV.23) will hold for any antisymmetric wave-
function vanishing outside a bounded domain of
dimensions of order d it appears that the conditions
on the potential might in general be insufficient
for instability.

V. QUANTUM SYSTEMS WITH COULOMB
INTERACTIONS

The Hamiltonian of a system of N point charges
g; with Coulomb interactions is given by

5(:” = TN + UN, (V.l)
N _hZ .
1= % (52 v, V2
_ q:'4q;
Uy = Z Tt (V.3)

where m; is the mass of the 7th particle. Notice
that we do not enclose the particles in a box; 3Cy
acts thus in the Hilbert space of square-integrable
functions of 3N real variables.

We shall restrict ourselves to the case where ¢,
takes only the values +1 and —1 and m; two
values m, (if ¢; = +1) and m_ (if ¢; = —1). We
suppose that there are N, particles with charge +1
and mass m. and N_ particles with charge —1 and
mass m_. The remarks which we shall make could,
however, be extended to the situation of different
values of ¢; and more than two different masses.

We first prove a scaling property of the Hamil-
tonian #y. Let A > 0 and, if ¢ is a square-integrable
function of ry, -+ , Iy, let ¢™ be defined by

‘P(”(rh sre ,Iy) = >‘3N/2'I’()\r1: Tty MN)- (V4)
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The transformation ¢ — ¢ conserves the scalar
products (it is a unitary transformation of Hilbert
space). Furthermore

ATy + MUY = [(Ty + Un)gl®. (V.5)

From this it follows that the spectrum of 33 =
N2Ty + N Uy 1s the same as that of 3Cy.

Let E,(N) be the greatest lower bound (glb) to
the spectrum of 3Cy, or “lowest eigenvalue’ of 3Cy.
By the scaling property it is also the glb to the
spectrum of 3¢5, The glb. Eo(2) to the spectrum of

B n 1
2m, 2m_ |tz — 14

¥ = — Vf - V§ - (VG)
is just the ground-state energy of a ‘“hydrogen
atom” with masses m, and m.. We now compute
an upper and a lower bound of E((N) in terms of
Ey(2). For simplicity we take N, = N_ = N, = }N.

We may obtain an upper bound to E,(N) by
taking the expectation value of 3¢y for a normalized
test function ¢. If we take as ¢ the wavefunction
of N, “hydrogen atoms” formed by pairing the
positive and negative charges, and if we assume
that the mutual distances between these ‘“hydrogen

atoms” is large, we find
EyN) < —NoEo(2).
To find a lower bound to E,(N) we write

No _hz )
2o Vi

V.7

No

hz 2
GCNZ Z~—v.+

~i2m

It
™
™

—
3
/1—”\

=

|
2
™
™
3
/-I\
lav
4

(V.8)

Using the scaling property for 3¢, we see that the
operator in square brackets on the r.hs. of (V.8)
is bounded below by E,(2), therefore (V.8) gives

Ey(N) > —NGE(2). (V.9)

We have thus found for E,(N) an upper bound
(V.7) which is linear in the number of particles,
and a lower bound (V.9) which is cubic. As discussed
in Section 4 one would expect that a linear lower
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bound should exist, with perhaps the restriction
that either the positive or the negative particles
obey Fermi statistics. What we can at least show
is that the existence of a linear lower bound

E(N) > —N,B (v.10)

for any one choice of the masses m., m_ implies its
existence for any other choice m/, m .. This statement
follows readily from the relations (V.11) and (V.12)
below. The identity

EyN, m,, m.) = ME,(N, m,, m2)

m’
=——=X
m-

.o Mmh
if =
ms

(V.11)

follows from the scaling property if one notices
that the Hamiltonian for the masses m/, m’ is
just A3c™. The inequality

E\N, my, m.)

< EfN, m{, mZ) (V.12)

is obtained by remarking that to change m. to m/
amounts to adding the positive term

(5 - 52) 5 (- v

m+ 2m,/ =

+(’”2

2m.

if my > m!

)5 -v) v

2m./ =

to the Hamiltonian.

As a last remark we notice that the difficulty in
proving (V.10) does not come from the long-range
part of the Coulomb potential. Indeed let

1
- = @) + ), (V.14)
with
—ar 1 — —ar
o) =, o) =" (V.15)
r
We may write
Jox = 3¢ + U, (V.16)
V) < ( h’
JCN = ; 2m‘ v‘)
+ gxmq,-sal(rf —r1), (V.I7)
¥ = X astwulr; — 1. (V.18)

In 3’ we have removed the long-range part of
the Coulomb potential, replacing 1/r by a Yukawa
potential. Our remark is that the long-range part

M. E. FISHER AND D. RUELLE

of the Hamiltonian, namely U}, is bounded below
by a multiple of N. This follows from theorem I
if one notices that ¢,(0) is finite and that the Fourier
transform of ¢, is nonnegative, being proportional to

1 1 o
pn - pz + az = pz(pz + az)‘ (V.19)
ACKNOWLEDGMENTS

The authors are pleased to thank Dr. J. Ginibre
for a helpful discussion. One of us (M.E.F.) would
like to acknowledge correspondence with Dr. O.
Penrose and to thank M. Motchane, the Director
of the Institut des Hautes Etudes Scientifiques,
for his hospitality during a visit in the course of
which the work reported here was done.

APPENDIX A

The object of this appendix is to prove the
following result:

Theorem IV. Let 0 < a, < a, and let £(r), 9(r)
be monotonic non-increasing non-negative functions,
defined on the intervals (0, a,)and (a;, + ») re-
spectively, such that

fo C T dr = 4o, (A.1)
+
f.. ™ dr < e (A.2)
If the pair potential ¢(r) satisfies
o(r) = E(r) for r < a, (A3
o) = —n(r) for r 2> a (A4
and if there exists a constant w > O such that
o(t) > —w forall r, (A.5)
then there exists a constant B > 0 such that
Ult,, »++ 1) = 2, ¢ty —1) 2 —nB (A6)
15i5i%n
forallm, r, +-- , 1,

To prove the theorem we show that we may write

o(r) = (1) + @) (A7)

where ¢’ (r) > 0 and ¢® has an integrable non-
negative Fourier transform ¢ (p), i.e. ¢* is of
positive type' *. The fact that ¢ admits a positive-
type minorant ¢ follows from lemmas 1 and 2
below as the reader will immediately check by
writing

‘Pm(r) = &(r) — (7). (A.8)
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Lemma 1. There exists a nonnegative function n,
such that

o(f) > —ny(r) forall r (A9)
and the Fourier transform of ns satisfies
%) < C&" + 1) (A.10)

for some positive constant C.
We define a function 4, in the interval (0, 4 «)
as follows:

i <
m() = { v B rsa g
inf {w, (N} i r> a.
Then our hypotheses imply that
o(r) = —m(r). (A.12)

Given b such that 0 < b < a, we introduce also
a function 7, on (0, + «) by

w if r<%b
no(r) = {
mir—b if r>0b.

The functions », and 75, are nonnegative, non-
increasing and integrable because

fo i m)r dr = w fo " P 1dr

(A.13)

+ [Crtdr < 4o, (A19)

f ()" dr
0
b ©
= W j; P dr j; m(r — byt dr
b
= 7—1 d
w j; P dr

+ [ T+ B dr < e, (A1)

where we have used the fact that (r 4 b)"7'/r"™*
tends to unity as r — .

From the definition (A.13) of 4, and the mono-
tonicity of 5, and 7, it follows that

() 2> () if | —~r| <D (A.16)

If %, and 74, are considered as functions of position
vectors we therefore also have

) 2 m@ i |r'—r<b (A7)

Now let ¢ be a non-negative function on E’
vanishing outside a sphere of radius b centered at
the origin and such that

[ a v = 1. (A.18)
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We suppose that ¢ has continuous derivatives of
all orders and define 7; as

w@) = [a v =), (A19)

Then, (A.16) gives

7a(r) = m(r). (A.20)

Furthermore the Fourier transform #; of 7, is
proportional to the product of 4, (which is con-
tinuous and bounded) and ¥ (which is continuous
and decreases at infinity faster than any inverse
polynomial). Therefore 4; is continuous and de-
creases faster than any inverse polynomial at in-
finity. Lemma 1 follows from this fact and (A.12),
(A.20).

Lemma 2. There exists a (nonnegative) function §
such that

< <
&(r){— olr) for r<a (A.21)
=0 for r>a
and the Fourier transform of £, satisfies
E) > CW' + D (A.22)

with the same constant C as in Lemma 1.
Let x(r) be continuous, nonnegative and satisfy
x(0) > 0 and x() = 0 for r > %. Define x, as
0@ = [drxe— @), (A29)
Then x, is continuous, nonnegative and x,(r) = 0
if # > 1. Furthermore the Fourier transform %,
of x, is continuous, nonnegative (being proportional
to the square of ) and nonzero in some neighbor-
hood of the origin.
Consider the function x. defined by
x(®) = 0@ [ dpe™ @ + D7 (A20)
Then x, is continuous, nonnegative (the integral
in (A.24) is a K-function of the theory of Bessel
functions') and x.(r) = 0 if » > 1. Dividing x,
by max,., x.(r) we obtain a function x; with
properties given as follows:

Lemma 3. The function xs ts continuous, non-
negative, bounded above by 1 and xs(r) = Qif r > 1.

1 See Ref. 4. p. 94 or Formula 7.12 (20) in A. Erdelyi
Magnus, Oberhettinger, Tricomi. Higher Transcendental
Functions, Vol. 2. McGraw-Hill, New York (1953).
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The Fourier transform of x, satisfies

%) 2 O’ + D7

for some positive C'.
To prove (A.25) we remark that £; is proportional
to

(A.25)

[ s@te - wr + 107, (a2s)
where %, is continuous and nonnegative. Since
£:(0) # 0, (A.25) follows from (A.26) by restricting
the integration to a small neighborhood of the
origin.

‘We now use Lemma 3 to prove Lemma 2. We may
suppose that £ is a strictly decreasing function of r.
Then, for all sufficiently large positive integers n
(n > n), let @, < 1 be defined by ¢(a,) = n.

The step function £*(r) = n for aps, < r < a,,
clearly does not exceed £(r) when r < «,,. This step
function is simply the sum of the unit step functions
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6,(r)y = 1 for r < a, but zero otherwise. But the

properties of x;(r) stated in Lemma 3 imply that
xs(r/e) < 6,(r). In total we thus find

2 xa(r/a) < £0). (A.27)
On the other hand, because of (A.1) we have
2=+, (A.28)

n>no

Since @, < 1, (A.25) yields for the Fourier trans-
form of 2 ™ xs(a;'r) the inequality

Sane 2| Salew + v, @am

Lemma 3 follows from (A.27), (A.28), (A.29) if
we write
8(1) = 2 xs'r) (A.30)

for n, sufficiently large.
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A formalism is developed on an axiomatic basis and is shown to contain as special cases classical
mechanics, the usual quantum mechanics, as well as the quantum theory of systems with continuous
superselection rules. The structure of the symmetries of a general physical theory is studied and a

classification of observables is exhibited.

INTRODUCTION

NE can ask the question whether an axiomati-

zation of quantum mechanics is indeed needed.

In fact, quantum mechanics is ‘“axiomatized” if

one says that observables are “represented” by

self-adjoint operators on a separable Hilbert space;

states are generated by the vectors (or the ray) of
the Hilbert space.

The only trouble with these postulates, is that
we cannot call them physically intuitive, and as
one is looking towards formulating more sophisti-
cated theories, for instance quantum field theories
in the spirit of Wightman,' it is not immediately
clear that the above-mentioned requirements are
the minimal ones which ensure that the theory is
a quantum theory.

Our aim is not to propose a radical departure
from quantum mechanies; what we are looking for,
are the physically simple intuitive axioms, from
which one could deduce the usual postulates of
quantum mechanics. We present here what we think
to be a solution to this problem. Our formulation
will turn out to be general enough to contain as a
particular case not only the usual quantum me-
chanics, but also the classical point or statistical
mechanics, and we shall be able to treat rigorously
the case of continuous superselection rules.

We claim however, that such an axiomatization
is needed before one discusses any attempt of
generalizing quantum mechanics, and that any such
attempt should start by explaining which axiom
is to be rejected, by which one it has to be replaced
and then by working out a similar construction
to ours.

As far as the axioms are concerned, the present

* Research supported in part by U. S. Air Force Office
Research, ARDC. .

t See, for instance, R. Streater and A. 8. Wightman,
PCT, Spin_and Staiistics and All That (W. A. Benjamin,
Inc., New York, 1964).

work is based on the thesis of Piron,”> and it is in
its development very much in the spirit of the work
of Segal’~® and Mackey.®

We shall get algebraic structures out of our
axioms, and many authors have studied them in
quantum mechanical system. For instance Segal®*~®
who assumes the algebra of observables is a C*
algebra and Jauch”® who assumes that is a discrete
von Neumann algebra with Abelian commutant. In
quantum field theories, Haag introduced algebraic
structures in the Lille conference,” and the first
systematic treatment was given by Araki in its
Zurich lectures* followed by a series of papers.'*™**
Slightly different approaches may be found in
Haag,"*'** Guenin and Misra,"” and Kadison.'®

It is not possible to give a complete discussion
of all axioms, definitions and theorems here nor
to discuss all their implications, because this paper
would grow much too long. For the basic axioms we
refer to the thesis of Piron® which is anyway our
starting point. We think that most of the discussion
which could be made and most of the corollaries
which could be deduced from our theorems are more

2 C. Piron, Helv. Phys. Acta 37, 439 (1964).

3 J. Segal, Kgl Dansk. Videnskab. Selskab Mat-Fys. Medd.
31, No. 12 (1859).

4 1. Segal, Can. J. Math. 13, 1 (1961).

5 I. Segal, Illinois J. Math. 6, 500 (1962).

8 G. Mackey, Mathematical Foundations of Quantum
Mechanics (W. A. Benjamin, Inc. New York, 1963).

7 J. Jauch, Helv. Phys. Acta 33, 711 (1960).

8 J. Jauch and B. Misra, Helv. fPhys. Acta 34, 699 (1961).

% Les Problemes mathematiques de la théorie quaniique des
champs (CNRS, Paris, 1959).

10 H, Araki, Lecture notes Eidgenossische Technische
Hochschule, Zurich, 1961 (to be published).

1L H, Araki, J. Math. Phys. 4, 1343 (1963).

12 {, Araki, J. Math. Phys. 5, 1 (1964).

13 H. Araki, Progr. Theoret. Phys. (Kyoto) 32, 956 (1964).

14 H. Araki, Progr. Theoret. Phys. (Nyoto) 32, 844 (1964).

15 R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).

18 P, Kastler and R. Haag, J. Math. Phys. 5, 848 (1964).
( 9‘;31;4[. Guenin and B. Misra, Nuovo Cimento 30, 1272

1 .

18 R. Kadison, ‘“Transformation of States in Operator

Theory and Dynamics,”” preprint.
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or less obvious so that we shall leave them to the
imagination of the reader.

1. CALCULUS OF PROPOSITIONS

We start from the lattice theoretical formulation
of quantum theories in the form given by Piron,’
based on the old idea of Birkhoff and Von Neumann,**
and in this first part, we follow Piron very closely.

Among all possible observables on a family of
physical system, we shall consider those for which
the result of measurement can be expressed by yes
or no and we shall call them propositions. For a given
system, a proposition is said to be true if the answer
is yes with certainty. If this definition is fo have a
sense, if a is true, it should be possible to measure a
without perturbing the system, We shall admit this.

If ¢ and b are two propositions, it may happen
that one implies the other, ie., that every time a
is true then b is also true. We shall write thisa C b
anda = bmeansa C b, b & a.

On one set r of propositions, we shall require the
following axioms:

Aziom O: The relation & is an order relation; i.e.,
0,:aCa
0;,:a 2D,

From this axiom we can deduce that @ = b, b = ¢ =
a=¢ 6 =aV¥ae & 7, thus “=" is an equivalence
relation and we shall identify a and b whenever ¢ = b.

vo & r
bCe=aCe

Aziom T: 3 a greatest lower bound for any
family of propositions; ie., given a;,, 1 € J, 3 a
proposition denoted by {7 a, such that

J
T,:z2Ca; ViEJ=z<Na.
J
This axiom expresses the “and” of the logie. It
implies the existence of a proposition ¢ such that

¢ C a, va € 7. It is the absurd proposition which
cannot be true unless all propositions of » are true.

Aziom C:3 an orthocomplementation in r; i.e.,
to each proposition a & r, corresponds a proposition
a’ € r such that

C; :(a’)’ = q,
C,:a’ﬂa=q5,
C;:a’ ChebCa

Physically speaking, this correspondence is obtained
by exchanging “yes” and “no” in the use of meas-

18 . Birkhoff and J. von Neumann, Ann, Math, 37, 823
(1936).
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uring device. This of course has only a sense for an
apparatus which during a measurement does not
perturb the system if one of the answer yes or no is
certain.

C, corresponds to what in logic is called the law
of the excluded middle and C, is known as de
Morgan’s law. In logic always, the law of double
negation is (a’)’ € a; applying it of o’ and using C;
we get C.

In r not only a greatest lower bound exists, but
also a least upper bound for any family of proposi-
tions. Indeed, define

Ua = (Na);
J J
then
aSr vieJ
orCal ViEJoC Oaﬁw\}}a;gx.

We shall call ¢’ = I. I is the maximal proposition,
a & I ya € 7. I is true as soon as one proposition
is true.

The axioms OTC imply that 7 is an orthocomple-
mented complete lattice.

The lattice associated with a classical system,
for instance to the point mechanies, has other
additional properties. First it satisfies the axiom:

Azxiom D:
D, :anN(®Ue) = @b\ J@Ne) ve b cEr
which implies
D,:aVUBN) =EIUbN@Ye

known as distributivity.

Further, if we define an afom as an element
p & r different from ¢ and such that ¢ S 2z C p
implies £ = ¢ or £ = p, we have the

va,b,cEr

Aziom A: A,: va € 7,3 p such that p is an atom
and p € a.

Ayifipisanatom,e Cr CalUp=ag=1zxor
z=a\Jop.

A lattice which satisfies the axioms O, T, C, D, A
is called an atomic Boolean lattice.

We want to make our theory general enough to
contain quantum theory, and it is well known that
the lattice of quantum mechanies cannot be Boolean
(cf. Refs. 2, 20). We have thus to drop at least
one axiom. It is not sufficient to drop A only,
because a lattice satisfying OTCD may always be
imbedded in a lattice satisfying OTCDA (the classical

# J. Jauch and C. Piron, Helv. Phys. Acta 37, 439 (1964).
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statistical mechanics is an example). Thus D cannot
be maintained.

To guide our choice, we may remark that the
simple quantum mechanical systems in finite Hilbert
space (for instance spin systems) satisfy the

Property M: M: 2 C z=2\J (y Nz =
@Yy Nzvy €,

which is called modularity and is weaker than
distributivity (axiom D). It is not possible to retain
property M together with OTCA (with D) for a
quantum theory, because one can show that one
should then restrict oneself to the lattice of pro-
jectors of a family of finite-dimensional vector spaces
(which is the case of finite quantum systems). For
quantum system of the infinite type, we have to
release one condition at least. Von Neumann and
Birkhoff'*® have suggested to keep OTCM and drop
A. The lattice of proposition is then isomorphic to
the lattice of projectors of a family of type II, fac-
tors. On the other hand, the lattice of projectors
generated by the spectral decomposition of p and
g, [p, ¢] C 1 is not modular. We shall say that a set
of propositions is compatible if the system behaves
under the corresponding measurements like a clas-
sical system. As we know that the lattice of proposi-
tions for a classical system is a Boolean one, we are
lead to the following

Definition: a and b are said to be compatible,
a <> b, if the sublattice generated by e and b is
isomorphic to a Boolean lattice. (This lattice is the
set obtained by combining arbitrarily unions, inter-
sections and orthocomplementations, in this case
at most 16 elements.)

If @ C b, the lattice generated by a and b is:

é,a,a’ MNb,b,b,a\VV,d,l.

A necessary and sufficient condition for this lattice
to be distributive, and thus Boolean is

aJ@Nd=U0 Na
We shall make the following

Aziom P:a S b= a < b.

We shall call proposition system, any set 7 satisfying
0, T, C, A, P. In everything that follows, classical
physics is obtained by adding to this the axiom D.
We have the following fundamental result, due to
Piron®:

Theorem 1.1. = (satisfying O, T, C, A, P) is
isomorphic to the lattice of all projectors from a
family of Hilbert spaces 3¢;, § € Z, over a field.
Theorem 1.1 is the strongest result one can get
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from the axioms; in particular we cannot say any-
thing on Z which can be as well reduced to a single
point as be a many-dimensional space. Its exact
structure should be given by the physical system
considered. In order to be able to carry on our
analysis, we have to make the

Postulate Z: Z is a locally compact Hausdorff
space.

To simplify our work we shall add
Postulate Z': Z is countably dimensional.

but most of the following proofs could be carried
on without this last postulate. The proof of Theorem
1.1 is constructive and in principle determines the
field, although not in a unique way. It is not possible
to prove from the axioms that all 3¢; have to be
defined on the same field. As for easily under-
standable physical reasons, we want the field to be
continuous and connected to the unit, we are left
to choose between the real, complex, and quater-
nions. One can make quantum theory over these
three fields, but the works of Stueckelberg et al.?*
on one side, and Emch® on the other side, have
shown that they are “essentially” equivalent to a
quantum theory on the complex, We shall thus
make the mathematically very convenient

Postulate F: The Hilbert spaces 3¢; are defined
on the complex.

2. ALGEBRA ASSOCIATED WITH A LATTICE
OF PROPOSITIONS

The first idea which comes to mind is that all
that is needed is to imbed all 3¢; in one single
(eventually nonseparable) Hilbert space 3¢ and to
call observable any self-adjoint operator which
lies in the C*-algebra, or in the von Neumann
algebra (as one prefers!), generated by the projectors
representing 7. But there are many troubles with
this simple way of doing the things; for example Z
is in general not countable and thus even if we
have some reason of supposing the 3C; separable, 3¢
would not be separable; it is known that non-
separable Hilbert spaces are not necessarily equiv-
alent, so we do not know which one to choose;
other difficulties arise as one tries to define states
on the system.

Let us call  the sum of the 3¢;; i.e. an element
z € O is given by a family {z(})} of elements
z(1), () € ;. (N.B. we do not restrict ourselves

1 E. C. G. Stueckelberg, Helv. Phys. Acta 33, 727 (1960).
22 G, Emch, Helv. Phys. Acta 36, 739, 770 (1963).
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to countable families.) The sum of two elements
of  is given by

z+y = {z)} + {»©} = {&+ »E)}

and Az = {Az({)}; the zero element of $ is the
family of the zero elements of the 3¢,. § is not
necessarily an Hilbert space, but we could make it
a Banach space by defining

lz], = sup [z(5)].

On each 3C;, we consider the algebra B(3¢;) = B()
of all bounded operators on 3¢;, and in the same
way as for the sum of the 3C; we can define ¥ as
being the sum of all B(¢). ¢ € T is given by the
family

{a(0)},

I

at+b

o* =

a(?) € B(), {a(®} + {3},
{a(©)b()}, {a()*}.

As we want T to contain 7 among its projectors,
we cannot restrict ourself to countable families
only. ¥ can be made a normed algebra if we define

Hall, = sup [a(I]

ab =

and understand that ¥ contains only operators of
finite s-norm in this case. One easily verifies that

lla + bll. < lall. + [[Bl].,
lla + bll. < lla[L-1[o]].,

[, =1 where 1 is the identity of T,
[Aall, = |- |lall.,
llall, 20, lla]l, =0®a=0

and from [|a*@¢) a(©)|| = [la(®)]]* follows ||a*a||, =

Hlall?.
We have thus the
Lemma 2.1: T is a B*-algebra,

if T is closed under the norm ||-||, (cf. Def. B*
Rickart,”® p. 180). That T is closed follows from
the fact that the B(¢) are closed under the norm
[[-]] (cf. Dixmier™ 1.3.3 p. 6).

Lemma 2.2: T is a Bear *-ring of type 1. It is
homogeneous if all 3¢; have the same dimension.

Proof: (i) ¥ is a Bear-ring from Kaplansky®®
Ex. 5, p. 3.

(ii) T is type I (Def. cf. Kaplansky,?® Def. 5, p. 6)
because if we take a one-dimensional projector p(¢)

28 C. Rickart, Banach Algebras (D. van Nostrand Com-
pany, Inc., Princeton, New Jersey, 1960).
19624;)J' Dixmier, Les C*-algébres (Gauthier-Villars, Paris,
27, Kaplansky, “Rings of Operators,” Chicago Lecture
notes, 1955.
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in each 3¢, p = {p()} has I for central support
and is Abelian.

(iii)) ¥ is homogeneous (Kaplansky, Def. 1 p. 32)
if all 3¢, have the same dimension; we can take p,(})
one dimension in 3¢, p;(¢) L p(¢) for 7 # &k and
U: 2:¢) = I(¢) then the p; = {p;(¢)} are mutually
orthogonal, *-equivalent, Abelian, and lub p; = I.

Lemma 2.3: 3 is a AW*-algebra.

Proof: Use Lemma 2.1 and 2.2 and the Def. p. 289
of Rickart.”®

Theorem 2.4. There exists a *-representation T,
of ¥ on an Hilbert space 3C., such that it is faithful,
norm preserving, and the norm on ¥, is induced
by the norm of 3¢,.. T, is a C* algebra.

Proof: Lemma 2.1 and Theorem 4.8.11, p. 244
and Corollary 4.8.12, p. 244 of Rickart.*®

The algebra T and its representation ¥, provides
the starting point for the investigations of Segal®™®
and we can thus say that we have in this direction
extended Segal’s work by proving one of his main
postulate from what seems to us simpler and more
fundamental axioms; in fact we get even a stronger
result, as we can prove not only that the algebra
of all observables is a C*-algebra, but even that
it is an A W*-algebra, which is also a representation-
invariant feature. In what follows however, we
shall not adopt Segal’s point of view about the
definition of states.

3. STATES

Definitions of states for systems of propositions
have been given by Piron’ and by Emch and
Piron.*® In the C*-algebra approach®® the states
are defined as being linear positive functionals on the
algebra. What is common to these different points
of view is that the states are required to be defined
of all elements of the lattice or the algebra. We
reject this requirement and we shall try to give a
more general definition of a state, i.e., we shall not
require it to be defined on all elements of the lattice
or of the algebra, and the reader will be able at
the end of this paper to convince himself that this
generalization is indeed needed, if we want to be
able to represent certain kinds of observables and
certain nontrivial symmetry groups.

Definition R: 7' is the definition lattice of a state
if 7’ is a sublattice of = such that

R a€ 7, beEr’=aNbE T,
Ry a€E+r=d E 7,
R3.’ ¢ e T,.

26 G, Emch and C. Piron, J. Math. Phys. 4, 469 (1963).
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R.:a; € 7 =\ a; € +' for any countable family
{a;}. (This definition of 7' is very similar to the def.
of Boolean algebra cf. p. 21 Halmos® and implies
that 7’ is a o-lattice in the sense of Birkhoff*® p. 52.)

Definition E. A state is a mapping o of a sublattice
' C 7, (' satisfying Ry, R,, Rs, R,) in the closed
interval [0, 1] such that

Ey: w(@ >0, vecE

E,: w(¢) =0,

E;: o) =1,

E,: o(@) = wd) =1=w@Nbd) =1,

Eg: aeobole) + o) =waJbd) + wl@aMb).
That 7 is & system of propositions implies®:

Lemma 3.1.

(a) a © b= wl@) < wd).

(b) If w, and w, are two states on the same 7/,
and if X\, and X\, are real positive numbers such
that \;+X, =1, then Ao, +\w, is a state on 7’. (This
expresses the superposition principle, If two states
w, and w, are defined on 7{ and 7} respectively,
they only may be superposed on 7] M 75.)

(¢) E;is equivalent to: a > banda Mb = ¢ =
w(a\Ub) = wla) + wid).

(d) E.is equivalent to: w(a) = w(d) = w(@\J b) =
wla N b) = wla\Jb).

Definition E,: We shall say that « is o-continuous
if a; E T,,

t # ], aMNa; =¢

a; < a;,

= w(o a;) = i w(as),

B .

i=1,2, -
Definition: Ex. w is normal if o(\ ey @) =

ZiEJ w(a.-)

Segal does not make the postulate of s-continuity
for states because this is not a *-representation-
invariant concept. We make it by analogy the prob-
ability calculus where it is always made and also
because we would not be able to make our con-
struction without it. Moreover it will turn out
that all mapping that we are concerned with are
normal, i.e., will preserve o-continuity and normalcy.

It can seem unnecessary to restrict the definition
of a state to a sublattice 7’ instead of defining it on 7
directly. In fact there is no difficulty in supposing
—_’Tmlmos, Measure Theory (D. van Nostrand Com-
pany, Inc., Princeton, New Jersey, 1950).

% . Birkhoff, Lattice Theory (American Mathematical
Society, Providence, Rhode Island, 1948).
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that a state is defined on all propositions if Z is
countable, even if the 3C; are nonseparable. In the
case Z has the power of the continuum however,
the things are no longer so simple. We can illustrate
this fact by the following example. Let Z be the
interval [0, 1] and for sake of simplicity, suppose
that all 3¢; are one-dimensional. Thus 7 is the lattice
of all subsets of the interval [0, 1] (we have all
subsets because of axiom 7). A (c-additive) state
on 7 will be a bounded measure on this interval,
and if we require the state to be defined on all
elements of 7, the measure has to be defined on all
subsets of the interval. This requirement is very
strong because it excludes such measures as the
Lebesgue measure of this interval, since it is well
known that there exist subsets of this interval which
are not Lebesgue measurable. We do not want to
impose restrictions which would eliminate the possi-
bility of considering such measures in our theory,”®
and this is the reason why we require the states to
be only defined on a sublattice. In this example,
7’ will be the collection of all Lebesgue-measurable
sets.

If we consider the sublattice 7, of = obtained by
arbitrary unions and intersections of all I(¢),
form an atomic Boolean lattice which isomorphic
to the lattice of all subsets of Z. Because of postulate
Z, we can define the Borel sets in Z, and we shall
make the following reasonable

Postulate B. If +' is the definition-lattice of a
state, 7/ contains all Borel sets of Z.

And from the definitions follows the

Lemma 3.2. A c-additive state induces a positive
bounded measure g on Z such that all Borel sets
in Z are p-measurable, u(Z) = 1.

We can now try to figure for ourselves what are the
elements of 7 which belong to 7/. On the projectors
in each 3¢;, the state functional, were defined, will
induce a form f(p(¢)), so that for p = {p(H)} E T
a projector of T,

o@ = [ £0®) du)

and o will be defined on all p = {p(¢)} such that
:(p@®)) is a p-integrable function (of {). Summa-
rizing, we can define:

Definition S: We call physical state, or simply

28 In fact if the continuum hypothesis is admitted, this
would amount to eliminate all measures which are not the
sum of at most a countable number of point measures with
suitable coefficients, as follows from Theorem 13, p. 187 of
Birkhoff.28
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state, a positive real functional w of the form

o@ = [ @) duld),

where u is a positive (c-additive) bounded [u(I) = 1]
measure on Z, and f; a state defined on all pro-
jectors on 3¢;, satisfying the properties E, through E;
and Ey. o is defined on all elements p = {p(¥)}
such that f;(p(¥)) is a p-integrable function. These
elements are called w-measurable.

Up to now, we have spoken of states as defined
only on projectors; the connection with the alge-
braic structure can be made using the theorem of
Gleason.”

Theorem 3.3. If P denotes the set of all projectors
on an Hilbert space 3¢, and if a functional f(p) is
defined for all p € P and satisfies E,, E,, E;, E;,
and Ey, then f can be considered as the restriction
to P of a linear normal positive functional f* defined
on B(3) and satisfying E,. Further, f can be
written as

f(a) = E (x;, ax;)

i

with X (@, 2) < @
and z; € 3C.

This theorem has been proven by Gleason in the
case of a separable Hilbert space. We have extended
the proof to the nonseparable case, and the proof
will appear somewhere else. Using this theorem,
we can thus extend w to all operators ¢ & T such
that fl(a({)) is a p-integrable function. In the
following section, we shall add some further specifi-
cations and restrictions to the f’.

We conclude this section by two lemmas which
are trivial, but necessary for the consistence of
our definitions.

Lemma 3.4%° ¥vp € 7, p # ¢, Jw such that
w(p) = L

Proof. p = {p(t)}. Let z € 3¢;,, such that p(¢,)
z =z,

[z| = 1-£.@(0) = (z, p(Eo)z) = 1.

Take the Dirac measure on the point ¢, with
weight +1.

Lemma 3.5.%°

Let py, p» € 7; ;1 # p.. Then Jw such that
w(py) # w(p.).

Proof. pv # p, implies that 3 at least one ¢,

® A, Gleason, J. Ratl. Mech. and Anal. 6, 885 (1957).
. ® The states constructed in Lemmas 3.4 and 3.5 satisfy
in an evident way a postulate L. which will be added later.
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for which p,({o) 3 p2(¢0), and in an Hilbert space,
if two projectors are different, there always exist z,
such that |p,(fo)z| # |p.(fo)z| All that is needed
is to normalize 2| = 1, and take the same measure
as for Lemma 3.4.

Remark: One of the reasons for Postulate B is to
have a principle of superposition of states a bit
less restrictive that the principle proven in Lemma
3.1.(b), which requires the states to be defined on
the same 7’, the definitions of lattices of two arbitrary
states have at least the Borel subsets of Z in common,
and the superposition principle is valid on the
common domain.

4. ALGEBRA OF MEASURABLE OBSERVABLES

The aim of this section is to use the properties
of the fields of von Neumann algebras in order to
get an explicit representation of the algebra gene-
rated by the measurable propositions. Because of
postulate Z, we may consider the family 3C; as a
field of complex Hilbert spaces on Z (Dixmier®
p. 139). Thus, § = Hrez JC; is a complex vector
space, an element x & § is a mapping { — z(¢)
defined on Z such that 2(t) € 3¢, v¢ € Z; such a
mapping is called a field of vectors on Z. If Y is a
subset of Z, an element of J];er 3¢ is called a
field of vectors on Y.

Definition (Dixmier, Ref. 31, Def. 1. p. 141) One
says that the JC; constitute a p-measurable field
of Hilbert spaces if one has given a vectorial subspace
® of § such that

(1) vz € ©, the function ¢ — ||z(¢)|] is u-meas-
urable,

(i) if y € § is such that, vz € ®, the complex
numerical funetion ¢ — (x(}), y({)) is p~-measurable,
then y € @.

(ili) 3 a sequence {x;, x5, -+-} of elements of @
such that v¢ € Z, the z,({) are a total sequence
in 3¢;.

The field of vectors belonging to @ are called
p-measurable field of vectors. A sequence z,, z,, - -
of p-measurable fields of vectors with property
(iii) is called a fundamental sequence of y-measurable
field of vectors.

Unfortunately, this definition of measurable fields
of vectors only apply to the case where all 3¢; are
separable, as follows from (iii). We cannot simply
drop (iii) because Dixmier®* (p. 143) has shown
that we have in this case also to drop (ii). This is

3t J. Dixmier, Les algébres d’operateurs dans Uespace hil-
bertien (Gauthier-Villars, Paris, 1957).
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a problem which is not yet solved and so the lack
of available mathematical techniques obliges us to
abandon a part of the generality we wanted to have
in treating our problem, we shall make from now
on the

Postulate N. All 3C; are separable,

One can show, however, that one always can
reduce the case where the 3C; are nonseparable to
the separable case if one does not request that
operators with zero expectation value in the con-
sidered state to be represented by nonzero operators
in the representation space.

Definition. A measurable field of veetors z({) on Z
is said to be square integrable if

[ 6P aue) < .

Lemma 4.1. The set of all square integrable fields
is a complex vector space & Forz € &, ¥y € 8,
=), ¥(©)) is an integrable function of {. If we write

@0 = [ @, y0) dud)

the space  is provided with a pre-Hilbertian struc-
ture.

Proof. See discussion p. 145, Dixmier.”
We have, forz € &, |zf° = [ |2()|* d () and the
z € R for which |z] = 0 are the z which vanish
almost everywhere. Call 3¢;, & modulo the elements
z with |z] = 0.

Lemma 4.2. 3¢, is a separable Hilbert space.

Proof. That 3¢, is complete follows from Propo-
sition 5, p. 146, Dixmier.*’ That it is separable is
a consequence of Postulate Z’ and Corollary, p. 149
Dixmier.”! 3¢, is usually written [ 5¢; du(f). We
shall write 3¢ instead of 3¢, whenever no confusion
is possible.

We have now to look on our problem from the
physical point of view. What is given to us is the
field 4¢; of Hilbert spaces and Z. We have seen in
the preceeding section that each state induces a
measure on Z. But this measure is not sufficient to
determine uniquely ® if Z is not countable. We shall
sharpen our definition of a physical state so that
to get rid of this indeterminancy and give a canonical
way of constructing ® and, therefore, 3C.

In our definition of the state we have imposed
conditions on f;(.), but no condition on the relations
between the f;(.) for different {. The following
postulate can thus be considered as being part of
our definition of a physical state:
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Postulate L. Let f;(.) = 2. @:(%), .2:(¢). There
should be, in each 3¢;, an ordering of the z;({) such
that if z. = {z.()}, z. € §,

(i) z; is p-measurable ¥z and square-integrable.
(i) (z:(5), z;(¢) is p-measurable vz, j.

Let M(¢) be in each 3¢, the subspace spanned by
the z;(¢), M*(¢) the orthogonal complement (in 3¢;).
We choose y;(¢) in each M (¢):

Lemma 4.8. The y;(¢) may be choosen such that
they are mutually orthonormal, u-measurable, square-
integrable, and are total in each 7.

Proof. Consider the field M*(¢) and apply Propo-
sition 1, p. 143 (i) and (ii), and Ex. 2, p. 154,
Dixmier.*!

Lemma 4.4. There exists one and only one &
such that z;, y; € ©;i.e., the fundamental sequence
{z;, y:} determines the structure of measurable
field.

Proof. Proposition 4, p. 144, Dixmier.*

Let now ¢ € T, i.e., ais a family {e(@)}, a@}) €
B(¢) which we call a field of operators and a can be
considered as a mapping of the field 3¢; into itself.
It is clear that a does not in general transform @
into itself, neither &. So we define:

Definition (Dixmier,” Def. 1, p. 157). A field a(})
of operators is called p-measurable, if for any
measurable field of vectors z(}), the field of vectors
a(D)z(¢) is y-measurable.

Definition. A p-measurable field a() is called
essentially bounded, if the essential upper bound A
of the function ||a(t)|| is finite.

Lemma 4.6. If a(t) is an essentially bounded
measurable field, and z({) € &, then a(H)2(}) € &.

Proof. Dixmier,* bottom of p. 159.

a(t) thus induces a linear operator on & and as the
reader can easily verify, an operator on 3C.

If we denote by ||al|, or, if no confusion is possible,
simply by ||e|| the norm induced by 3¢ on B(30C),
a is a bounded operator on 3¢ [thus belongs to
B(3¢)] and

Lemma 4.6. ||a]| = A.
Proof. Dixmier™ Proposition 2, p. 160.

Lemma 4.7. If two essentially bounded fields of
operators a(¢) and b(¢) define the same element
of B(ac), then a(¥) = b(¢) p-almost everywhere.



278 MARCEL

Proof. Dixmier,* corollary, p. 160.

Definition. (Dixmier,®® Definition 2, p. 160): An
operator a & B(H) is called decomposable, if it
is defined by a measurable field a({) essentially
bounded.

One then writes
D
a= [ a®) dus)
Lemma 4.8.
If a, and a, are decomposable operators and

[ a@a®, [ w@ o = a

a; =
then

G
a + a = f (al(f) + az(f)) au($);
-]
a0, = f a:($)as($) du(?)

[ ra@ane, ot = [ ax) au).

>\a1 =

Proof. Dixmier,”' proposition 3, p. 161.

Lemma 4.9. There exist in B(3C) a sequence
{b:}, b: = J® bi(¢) du(?), of decomposable operators
such that locally almost everywhere, B({) is the
von Neumann algebra generated by the b;(¢).

Proof. Dixmier,* proposition 5, p. 163.

This lemma is important for us because it insures
that we still have retained ‘‘enough’ operators from
€. We shall call T, the algebra of all decomposable
operators, The purpose of the end of this section
is to show that <, is a von Neumann algebra of
discrete type.

¢, is the von Neumann algebra generated in 3¢
by the lattice of all measurable propositions by
respect to the states f which induce the measure p
on Z and @. We call shortly £, the algebra of
measurable observables, although we shall define
observables only later.

Let L3(Z, u) be the set of all numerical complex,
measurable, essentially bounded functions on Z,
in which one identify two functions almost every-
where equal. Clearly L%(Z, p) is a *-algebra. If
g € L3(Z, u), the field of operators g({)-I(¢) €
B(¢) is measurable and essentially bounded. We
shall denote by a, the corresponding operator of
B(3c).

Definition. (Dixmier,* Def. 3 p. 165): The oper-
ators of the form a, where ¢ € Lg(Z, u) are called
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diagonalizable. Let 3 be the algebra of all diagona-
lizable operators.

Lemma 4.10. B is an Abelian von Neumann
algebra,.

Proof. Dixmier,” proposition 8, p. 166 (i).

Theorem 4.11. T, = B/, and thus is a von Neumann
algebra of discrete type with Abelian commutant.

Proof. Apply corollary p. 169, together with Def. 1
p. 120 of Dixmier.*

We have used the postulate Z’ only in the proof
of Lemma 4.2, in order to show that 3C is separable.
In this case it is trivial that ¥, is of denumerable
type. For completeness, we shall show that it is
still the case if we drop postulate Z’.

Lemma 4.12. Even if postulate Z’ is not fulfilled,
¥, is a discrete von Neumann algebra of denumerable
type with Abelian commutant.

Proof. Use the fact that u is a bounded measure
and proposition 8 (iii), p. 166 of Dixmier.*

Moreover we have the following lemma which is
interesting in the case of classical physics:

Lemma 4.13. T, is Abelian if and only if the
Hilbertian dimension of the 3¢; is zero or one locally
almost everywhere.

Proof. Ex. 1, p. 175 Dixmier.*

Remark: The attention of the reader is called upon
the fact that in general ¥, is not the homomorphic
image of ¥ (and thus not a representation of T in
the algebraic sense.) One can easily show that a
necessary (and sufficient) condition is that the o-
lattice of all u-measurable subsets of Z is the homo-
morphic image of the lattice of all subsets of Z.

5. REPRESENTATION OF STATES

The following theorem follows from our con-
struction and Theorem 3.3. together with postulate
L:

Theorem 6.1. A state f(.) which induces the
measure p on Z and @, is a linear positive normal
functional on ¥,, which can be written as

10 = [ T @0, aom ) due

= Z (xt'r axi): a & If,

a
]

L]
[ a@ aueyy s € mew
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What we have done is that given a state to provide
a canoniecal construction of the algebra of all measur-
able observables (by respect to this state). The
natural point to investigate now, is what has to be
the relation between two states so that they are
both represented nontrivially (i.e., by nonidentically
zero functional) as linear functional on an algebra
<, for a certain f.

Definition. Given a state

10 = [ T @), =0 dutd),

the induced measure p on Z and @, and the corre-
sponding ¥, another state

00 = [ X 00, 2.0) a0

is said to be faithfully representable on &, if

(i) any p-measurable field of operators is also
p-measurable;

(i) any p-measurable field of operators which
corresponds to a nonzero operator of T, is also
corresponding to a nonzero operator of I,;

(iii) The y,(¢) are u-measurable, square-integrable
field of vectors.

Following immediately from the definition is

Theorem 6.2.

i) = [ T 0.0, 5.0) dutd

is faithfully representable on <, only if any p-
measurable subset ¥ C Z is p-measurable and
w(Y) # 0 whenever p(Y) 5 0.

Corollary 6.3. This implies that 74 O 77, and if
any w-measurable subset ¥ of Z is p-measurable,
u is absolutely continuous by respect to p (Halmos,”
p. 124).

Definition. The states f,(.), f2(.), - - - are said to be
together f-representable if there exists a state induc-
ing the measure u on Z and to which corresponds
g, such that f,(.), f(.), -+ are all faithfully rep-
resented on I,.

Theorem 6.4. If Z contains a noncountable set of
points, there exists no state inducing a measure u
on Z and to which would corresponds <, such that
all states on the system are faithfully represented
on 3:,.

Proof. Consider the family of states which induce
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the Dirac measure on every point of Z. Because of
Theorem 5.2, p should be nonzero for every point
of Z, but the condition u(Z) = 1 cannot be satisfied.

6. SYMMETRIES

We call symmetry of our physical system an
automorphism (or antiautomorphism) of the lattice
r. A group (resp. a semigroup) of symmetry is a
group (resp. a semigroup) of automorphisms of 7.

This definition may be found in Ref. 26 and it is
inspired by Segal’s® work in which the evolution
is considered as a group of automorphisms. We shall
treat here the evolution as among the symmetries.

For the sake of simplicity, we shall not consider
here anti-automorphisms, but the reader interested
in them may see for instance Dixmier,* pp. 8-10.

It is easy to see that any automorphism of =
induces an automorphism of ¥, using a result of
Emch and Piron®®; the converse is of course trivial.
We shall thus speak indifferently of automorphisms
of r or of T.

There are two characteristic classes of automor-
phisms of £. First an automorphism may just be a
collection of automorphisms in each B({); we have
then a mapping { — ¢ of Z identically onto itself;
B(¢) is mapped onto B(¢) for the same . We call
such an automorphism a b-automorphism. Another
possibility is to consider a mapping of Z onto itself
so that 3¢, — 3C;.. This requires, of course, that 3¢; is
isomorphic to 3C;.. This mapping induces also a
mapping of B(¢) onto B('), but we do not allow
for a supplementary automorphism in B({’), i.e.,
we consider the isometric mappings between the 3C;
to be fixed once for all. An automorphism of this
second kind we shall call a z-automorphism.

Theorem 6.1.
Any automorphism of £ may be written as the
product of a b- and a z-agutomorphism,

Proof. Follows from a similar theorem proved
in Ref. 26.

Lemma 6.2. A b-automorphism is generated by a
field u(¢) of unitary operators.

Proof. Use Dixmier® corollary to proposition 4,
p. 256.

Theorem 6.3. Let f be a state which induces the
measure g on Z and to which corresponds the
algebra ;. If U is a b-automorphism of T and if the
field of operators u(¢) from Lemma 6.2 is a meas-
urable field of operators, U is represented by an
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automorphism of T, generated by the unitary
operator

w= [ u@a), wew

The proof is trivial remembering the construction
of T,. We remark that by respect to T or T, U is
what is usually called an inner automorphism. We
remark further that we cannot represent the b-
asutomorphisms in <, unless the field «({) corre-
sponding to U is measurable. This means that
physically speaking, we have to retain only the
states for which %(}) is a measurable field of
operators. Only for these states has the symmetry
to which the automorphism corresponds, a meaning,
These states are called compatible with the given
b-automorphism, and the corresponding algebra is
called compatible with it.

Let us now consider z-automorphisms W. Such
an automorphism will map a p-measurable field of
operators a(}) on the field a(W¢). But the field a(W¢)
needs no longer be p-measurable, Thus a z-auto-
morphism only has a meaning for the states which
induce measures on Z such that a measurable field
of operators is mapped onto a measurable field.

This is, however, still not enough. It may happen
that W maps a field of operator a(¢) to which
corresponds the zero operator of ¥, onto a field
a(W¢) to which corresponds a nonzero operator
in &, or vice versa. In such a case W will obviously
not be represented by an automorphism of T,

Definition. A state f(.) = [ f;(.) du({) to which
corresponds T, is said to be compatible with a
z-automorphism W if W induces an automorphism
of T,.

Following immediately from the above discussion,
we have

Theorem 6.4. A state f is compatible with a 2-
automorphism W if and only if any measurable
field of operators is mapped on a measurable field
and if the measures p and p¥[u” (y) = u(Wy)] are
equivalent,

Theorem 6.5. Let V be an automorphism of T
and f(.) a state compatible with V(i.e., compatible
both with the b- and z-automorphism parts of V).
Let I, be the algebra corresponding to f(.). Then V
induces an sutomorphism of ¥, which is implemented
by a unitary operator v € B({3C). » € L, if and
only if the z-automorphism part of V reduces to the
identity.

Proof. Use Lemma 6.2. for the b-automorphism
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part. For the z-automorphism part use th. 6.4. and
Dixmier,*" corollary p. 253. The last statement
follows from Theorem 4.11 and Proposition p. 255
and corollary, p. 256 of Dixmier,” remarking that
a z-automorphism does not leave the center of T,
elementwise-invariant, as does a b-automorphism.

We shall show in another paper® that there exist
physical models in field theory which provide
examples of continuous group of z-automorphisms,
ie., of symmetries which do not leave the center
elementwise-invariant. But it is a somehow surprising
fact that the class of possible groups of z-auto-
morphisms is rather restricted. Araki'® has proven

Theorem 6.6. Let T(z) be the unitary operators
representing the translation part of the Poincaré
group and assume that

T(x) — fei(z.p) E(dp)

satisfies the spectrum condition, i.e., that for outside
the forward cone

V+ = {p; (p’p) 2 pro Z 0}’E(A) = 07

3
(@, p) = 2’p° — Z_; z'p’
and E(A) is a projector for any four-dimensional
Borel set A. Then if T'(z) generate a group of auto-
morphisms of a von Neumann algebra M, and if
there exists a cyclic state by respect to R, invariant
under T'(z), then T'(x) will leave the center of N
elementwise-invariant, i.e.,

T@aT(@x)™ =a, VaERNRNN.

Corollary 6.7. On a classical system, the translation
part of the Poincaré group cannot satisfy the
spectrum condition of Theorem 6.6. without im-
plying that the translation part of the group is
represented by the identity automorphism.

Corollary 6.8. Let A(t) be the family of unitary
operators representing an Abelian group of auto-
morphisms of a von Neumann algebra N, and let
A() = ™, H = H*. Suppose further that there
exists a cyclic state for M, invariant under A(2).
If the group does not leave the center ' N N of N
elementwise-invariant, H is not an operator with
nonnegative spectrum.

We shall end this section with a remark on auto-
morphisms of a subset of T only.
Let & be a *-subalgebra of T. Given a state f(.)

2 G. Emch and M. Guenin, “Gauge Invariant formulation
of the BCS-model,” preprint.
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and the corresponding algebra T, we shall get a
*-gubalgebra &, of T,. It is not true that any auto-
morphism of ¥ will induce an automorphism of &,
neither is it true that any automorphism of & can
always be extended to an automorphism of .

Definition. We call partial symmetry an auto-
morphism of a *-subalgebra & of $ which cannot
be extended to an automorphism of .

In the case where the algebra ¥ is the algebra
B(3¢) of all bounded operators on a Hilbert space
3 and © a *-subalgebra of B(3C), then an auto-
morphism of & which is not unitarily implementable,
i.e., is only an algebraic and not a spatial auto-
morphism, will provide such an example of partial
symmetry. In our mind, however, what is important
is not the question whether the automorphism is
unitarily implementable or not, which is important,
but the fact that the automorphism can be extended
to an automorphism of £ or not. One can give
examples of two von Neumann algebras i and ¥
such that ¥ C YU (one can even admit that ¥ is
a factor of type I.) and an automorphism of N
which is implemented by a unitary operator but
cannot be extended to an automorphism of .

We think that one has yet to make a full theory
of the partial symmetries, and to study their
possible connections to the broken symmetries ob-
served in physics.

7. OBSERVABLES

Up to now, we have only defined propositions,
but we have not yet assigned certain operators of §
to be observables. In fact the techniques employed
in Secs. 5 and 6 are more general, and can be used
for cases where the algebras are not generated by
propositions, but for instance by the field operators
in a field theory; the only point is that in this case
we get in general an algebra () which can be a
subalgebra of B({) only.

The purpose of this section is to define observables,
and to introduce & classification among them.

The rough idea is to call observable any mathe-
matical object which can be constructed out of
propositions.

Using the spectral theorem, it is possible to
construct in this way all self-adjoint operators of &,
and as any operator of T is the sum of two self-
adjoint ones with suitable coefficients, we can cover
g in this way. It is customary to consider only
self-adjoint operators as being observable, because
in any state they will have real expectation value.

Let a be a field a(t) of self-adjoint operators.
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Each a(f) can be written, using the spectral theorem,
a($) = { N dE;(A). For any Borel set A of the real
line, E;(A) is a projector of B(¢). If we now consider
the field a(f), to each Borel set A will correspond
8 field of projector E;(A). This field is in fact a
proposition. The collection of all fields E,(A) corre-
sponding to a field of self-adjoint operators we
shall call shortly the spectral family of the field.

Definition. We call class-A-observable, a field a(})
of operators such that there exists a state { inducing
a measure p on Z and & such that the spectral
family of the field is a collection of measurable
fields of projectors.

An important subset of the class of all class-A
observables is introduced by the

Definition. A class-B observable, is a class-A
observable such that there exists a state f and the
corresponding algebra T, with the property that
any nonzero proposition of the spectral family of
the observable is represented by a nonzero projector
of &,. We have the

Theorem 7.1.
servable.

Proof. Apply the definition and Lemma 3.4.

Theorem 7.2. If a is a class-B observable, then
there exists a state f on a 77 C 7 such that it takes
different values for all propositions of its spectral
family, This state is called the separating state of
the given observable.

Proof. T, and 3¢ from the definition of a class-B
observable. Let % be the Abelian von Neumann
algebra generated by a. Being a subalgebra of T,
9 is of denumerable type of Lemma 4.12. Thus by
Dixmier, corollary, p. 20, there exists a separating
element z & 3¢ for . The state defined by z on &,
fulfills all conditions of the theorem.

We do not think one should assign any physical
value to fields of self-adjoint operators which are
not class-A observables. But, of course, we cannot
prevent anybody from combining a noncountable
number of class-A observables and eventually getting
out of the class A, We shall thus refer to any field
of self-adjoint operators which is not a class-A
observable as a class-C observable.

There exists a more curious class of possible
observables which appear when we consider theories
invariant under a symmetry transformation which
is 8 z-automorphism. For the sake of simplicity, let
us make the discussion in a special representation.
Choose a state f compatible with the given auto-

A proposition is a class-B ob-
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morphism, and construct ,. By Theorem 6.5, a
z-automorphism of T, will be generated by a unitary
operator w which belongs to B(3C) but not to T,.
This operator w can be written as e**, with & a
self-adjoint operator. One has the feeling that it
is not “fair’” to deny to an k constructed in this
way the name of observable, because according to
our general principle they are constructed, although
in an indirect way, from the structure of . On the
other hand, as h does not belong to T, it is not
possible that the spectral projections of # belong
to $,, and one easily sees that they cannot be
propositions. The question is, what is then their
physical meaning? We can turn the problem the
other way round and ask: are there observables
in physics which cannot be decomposed in a family
of propositions? We think the answer is yes. Piron®
has already remarked that » should not be considered
as the lattice corresponding to a new logic. In
particular, he says that the statement: ¢ proposition
a is true,” is not a proposition. We shall go further
and remark that, in general, we should not expect
that expressions like the sign of the ratio of the
value of a state on two specified sets of observables
to correspond to a proposition, and neither, more
generally, any expression obtained by combining
expectation values of sets of observables.

We think that parity measurement provides an
example of observable which cannot be expressed
by propositions; the statement: “the system has
odd (or even) parity” has no meaning. The only
meaningful one is: “the system A has odd (or even)
parity by respect to the system B.” But this involves
precisely the combination of expectation values for
two sets of observables.

They may be other examples, for instance para-
statistics, or some gauge transformations of the
type met in the BCS model, but we have no
clear idea of them now.

Anyway, we shall call class-Z observables, self-
adjoint operators like A, derived as generators of
z-automorphisms.

8. POSSIBLE GENERALIZATIONS

The first possible generalization would be to drop
Axiom A. If one does this, the difficulty is to prove
the analog of the theorem of Piron (Theorem 1.1.)
The natural result to expect is that 7 is then isomor-
phic to the lattice of all projectors in a family
A(¢) of von Neumann algebras in a family 3¢, of
Hilbert spaces. With this result, it would be then
easy to do the same construction as ours, with g,
being again a von Neumann algebra, but of course
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no longer necessarily of discrete type. In particular,
we expect Theorem 6.5 to be then not necessarily
still valid.

However, we want to call the attention of the
reader upon the fact that constructing a model for
which the algebra of observable is not of discrete
type, is not a contradiction to Axiom A. In the
spirit of our work, it is merely an indication that
this algebra does not contain all observables.

Another axiom which can be attacked, is the
Axiom T. One could object that it is not very
physical to assume the intersection of arbitrary
sets of propositions and that one should only
postulate it for countable sets. + would then be
only a o-lattice instead of a complete lattice. We
think we have at least partly taken care of this
objection by defining our states only on a s-sublattice
of 7, but, of course, dropping Axiom T, and replacing
it by intersection for countable families only, is a
possible generalization.

A much deeper problem is the question of nor-
malcy of states (Ey). To be honest, we have to say
that we do not know at all if this restriction have
any physical meaning; we have made it only to be
able to solve the problem mathematically. The main
objection to this postulate is that it is only invariant
under normal homomorphisms of the algebra. Its
main support is that at least s-additivity is always
postulated for probabilities, and in a separable
Hilbert space, normaley is equivalent to s-additivity.

Still another possible generalization would be
to drop E; [and then to replace E, by (d) of Lemma
3.1.]; that is, not to normalize the states, which is,
of course, only of interest in the case w(l) = + .
Such a generalization could be useful for some models
and we do not think that there is any fundamental
difficulty which would prevent our formalism from
being adapted to also contain this case.
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Explicit simple formulas are given for the reduction of some direct products of the irreducible
representations of SU(n). All the interesting products from the point of view of the various symmetry
models in particle physics are included as special cases of our results. In particular, all products of
the totally symmetric and the regular representations of SU(n) are evaluated.

HE study of the symmetry properties of ele-

mentary particles has recently led to various
symmetry schemes, most of which are based on the
groups SU(n) of unitary unimodular matrices of
order n. In addition to the “old” SU(2) description
of ordinary spin and isospin, extensive use is made
of SU(3), SU4), SU(6), SU(8), and SU(2). In
all these models particles are classified into different
irreducible representations (IR’s) of the relevant
group and the analysis of reactions or symmetry
breaking interactions involves the reduction of direct
products of IR’s. The problem of finding all the
IR’s which appear in the product of any two rep-
resentations of SU(n) is usually treated according
to the Littlewood theorem.' However, the use of
higher and higher symmetry groups, whose IR’s
are of large dimensionalities, makes the explicit
calculation somewhat tedious in many cases. The
purpose of the present note is to give explicit simple
formulas for the reduction of various direct products
which are often encountered in particle physics.
In particular, all the physically interesting products
of SU@B), SU4), SU(6), SU(8), and SU(12) IR’s
are obtained as special cases of our formulas.

IR’s of SU(n) (or of the Lie algebra A,_,) are
usually denoted either by a Young diagram [f;,
fa +++ 5 fas] Where fi > fin, £ 2 0, or by the
maximal weight notation (\;, A,, + ++ , Ms=1). The two
notations are related by
f"+l

N=f — for ¢=1,:-- ,n—2;

Am1 = fn—l-

ey

We shall use the second notation. The dimen-
sionality of (A, -+, A—y1) is given by

P,-P,---P,_,
121 - (n — !

dy oy M) =

1 D. E. Littlewood, Theory of Group Characters (Oxford
“University Press, London, 1950).

where

P, = sty s
Py o= (u + pa)(pz + #a) - (a2 + pta-s)
Py = (utpetus)(patustps):  (n-stpn-ataa-1)
(2a)
Poy=(u+pz+ ot paa)pzs + ps +- - pama)
Poy=(m+p+ -+ pa)
and
wi=x-+1 for ¢=1,.-+,n—1.

For)\1=k,)2=l,)\3=k4= .
Eq. (2) reduces to

d(kl l;oy ;0)

_ k+1 (l+n—2)(lc+l+n—1) @)
Tk+l+1 l k+1 '

If I = 0 we obtain

d(k,o,---,0)=(”+’,§_1), @)

(2b)
. )\"_1 = O,

whileif £ = 0

d(O’l’O’"'°)=z-;1-1(n+§_1)(n+§_2)'

®)

Another important family of IR’s is that of

kl = )\n—l = k; >\2 = )\3 = e = )\n—2 = 0. InthiS
case we obtain

d(k, 0,-++,0, k) =’}_+b(”+k—2>. 6)

n—1 k
For k = 1 we obviously get the adjoint representation
d1,0,---0,1) =n*> — 1. )

We now deal separately with four sets of products
of representations.
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(1) The product of two adjoint representations:
t$o0,---,0,H&®(1,0,:--,0, 1
=(2,0,---,0,2.P20,---,01,0),
é@©,1,0,---,0,2.8(0,1,0,---,0,1,0),

(’B (1: 0"": 0; 1)-@(19 0,--+, 0, 1)!@(02“'7 0)-~
®

If we denote the dimensionalities of the representa-
tions by [d] we obtain in this case

' = 1] ® [n" — 1] = {In*(n + 3)(n — 1],

D IBE - DE - L. O I — N — 9L

@ n’tn - 3 + DL, D " — 11,

@ [’ — 11. D [1].. ©

[d] is the conjugate representation to [d]. The
subscripts s and a denote representations which are,
respectively, symmetric and antisymmetric with re-
spect to a permutation of the two multiplied equiv-
alent IR’s. Note that for n = 4 there are always
seven IR’s in the product, and the adjoint rep-
resentation appears twice. For n = 3 the dimen-
sionalities obtained are: [27], + [10]. + [10L, -+
(0], + [8L -+ [8ls -+ [1],. Hence, only six IR’s
appear in the reduction, the “[0],” being excluded.

(2) Another interesting case is that of multi-
plying two completely symmetric IR’s of SU(n).
This product reduces according to (we assume ! < k)

(k,o: e ;O)®(l’0: v ,0)

=§(k+l—2p,p,0,'--,0) (10
or, in terms of the dimensionalities,
[+ )]elC7Y)]
- Zt; [];c:lz:ipjll
i G

For SU(2) we naturally obtain

E+U@U+= X k+1+1-2] (2

In the special case of £ = [, (10) and (11) are
reduced to

(k90: et 70)®(k10s e ;0)
*
= E(zk"2p:p)0; e

=0

0, (13)

H. HARARI

6+ e[+

=z‘“:[2k—2£+1
2k —p+1

=0

CFETETITET) e

Even (odd) values of p represent symmetric (anti-
symmetric) IR’s with respect to permutation of the
factors. The case & = 3 is especially interesting in
symmetry models such as SU(6) and SU(12), since
the baryons are described by the totally symmetric
state of three m-component quarks. With k = 3
we get from (13)

[Inln + D(n + 2)] @ [nlzn + Dn + 2)]

-39 el+(3)]e

o301 elil3 1)) w

These are the possible independent channels for a
baryon-baryon seattering process in these models.

(3) We proceed now to the product of a totally
symmetric IR with its conjugate representation.
We find

&
(’6,0,“',0)@(0,"‘,0, k) = pz_%(P, 0,"',0,}7)

(16)
[(n-i-};—l)]@[(n-{-z— 1)]
L[0T @

Note that the dimensionalities of the IR’s do not
depend on k. For higher values of k we just get
additional terms.

Forn = 2

BHU@E+1= 2@ +D, (8
while for SU(3)

LOROK =X o
or ‘
[k + DG + 2] @ GE T D& F 2]
D DI N
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The baryon-antibaryon system is described in
some symmetry schemes by the product (16) or (17),
for & = 3. This is the case for the SU(6) and SU(12)
theories. Substituting k¥ = 3 in (17) we get

ntn + D + 2] Q@ lin(n + D(n + 2)] = 11 D
O - 11D Ur'n + 30~ DD
@ [Fen’(n + 1)*(n — D(n + 5)]. @1

Combining this with Eq. (9) we conclude that in
these theories the baryon-antibaryon annihilation
into two mesons will always proceed via four dif-

ferent channels: (0, , 0), (@, 0, , 0, 1),
(1,0, «++-, 0, 1),, and (2,0, --- , 0, 2), whose
dimensionalities are (1], [»* ~ 1],, [»® — 1., and

[2n*(n + 3)(n — 1)], respectively.

(4) Finally we present a formula for reducing the
product of the adjoint representation and a totally
symmetric one. This is encountered in calculating
meson-baryon reactions in some higher symmetry
models. We obtain

(k;O; "t )O)®(1107 e ’07 1)
=k+1,0,-- ;0;1)@(1‘7—'1: Lo0,--- ;0)®
@(’G,O,"‘,0)@(’0—2,1,0,"',0) (22)
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or
[(n+2—1):|®[n,__1]
=j(n+k+1)n;:_’:1 ]@
o[BEA(LIT)]e
o[ +i e[e-v+177)] @

Fork = 3, Eq. (23) leads to
Biate + Do + 2] © 1 — 1
[+ T ?) | @i+ v - 20+ 310
@ lintn + Dn + 2] @ o6 — DI (@0
The author would like to acknowledge helpful

discussions with M. Kugler, H. J. Lipkin, and
Y. Ne’eman.
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In this paper we evaluate the monomer pair correlation along the diagonals (p, p 4+ 1) and (p + 1, p)
of a square lattice otherwise packed with dimers. Using the perturbed Pfaffian technique the cor-
relation can be expressed as a Toeplitz determinant 7 |b;_;.1|/2x generated by the function

d F . 9] S8gN (Sin 0) + 'l:’l'e” hd 7 k — k8
B(§) = be”=zre’[ . + e
where + = z/y and z and y are the activities of z and y dimers. We will calculate the determinant

exactly and prove that the correlation decays with increasing monomer separation as B/4rt; where B
is simply related to the decay constant of the diagonal spin correlation at the critical point of a square
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ferromagnetic Ising lattice. The exact value is found to be B = 0.989487291.

1. INTRODUCTION

T has been shown recently’ by Fisher and

Stephenson (FS) that the perturbed Pfaffian
technique could be used to solve certain problems
related to planar lattices in which all but a few
lattice sites were covered by dimers such as to
form monomers or holes in a sea of dimers. This
technique uses the aid of a Green’s function to
evaluate perturbed Pfaffians in terms of lower-
order Pfaffians. On using this, the interaction
between two monomers can in certain cases be
expressed in terms of a Toeplitz determinant |b;—;..|
whose entries are derived from the basic Green’s
function for the problem. The elements of the
Green’s function are double trigonometric integrals
which give rise to elementary functions and thus
reflect the fact that the correlation shows no singu-
larity, as will be seen from the exact results.

Taking the paper by FS as our starting point, we
show that at the center of an infinite lattice, the
monomer pair correlation can be written as a
perturbed determinant which in turn can be evalu-
ated in terms of Legendre functions whose order
depends on the radial separation distance r. A
close analogy with the critical point spin correlation
becomes apparent from the perturbed determinant.

From the exact results the asymptotic expansions
in terms of the separation r will be found.

In the general nonsymmetric case (r 5 1) the
decay is found to be

4w(x,y|p—- 1;1’)

2B} [__2__]*[1 _ 1 (&‘_Zﬁ)]
rb L+ P 2rv2 \z* 4+ ¢°

When r =
obtain

I M. E. Fisher and J. Stephenson, Phys. Rev. 132, 1411
(1963).

1 the second term drops out and we

do(@,z | p — 1,p) ~ (2Bi/ar)[1 — (4")7]

as conjectured by FS on the basis of numerical
calculations. The constant B, is the coefficient of
the leading term in the asymptotic series of the
diagonal spin correlation at the critical point as a
function of radial distance.

2. THE GREEN’S FUNCTION

In this paragraph we will for the sake of clarity
reproduce some of the results derived in FS.?

The Green’s function matrix is the inverse G
of the basic skew-symmetric counting matrix D,,
whose Pfaffian gives the dimer partition function.
At the center of an infinite lattice the elements of
the Green’s function are given and denoted by

Glr,s |, =0 —r|s —s] =[iu
- (21)2 [ 0 M(Z(Z" 5 B guds, (1)
where
Ale, B) = 2°(1 — cosa) + 4*(1 — cos B) 2.2
and’®
M@ ula,B)

0 (¢, u both even)

%x[cos @+ 1 %
=] — cos t—1) %} €08 (%) (¢ 0odd, u even)

—14y cos <2 )l:cos (u + 1) 8 2.3)

—~ cos(u— 1) g] (t even, u odd).

2 See Ref. 1, Sec. 4, p. 1415.
* We note that there is a misprint sign in the last line of
the definition of M(¢, u | «, 8) in FS; Sec. 4, p. 1416
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Two important properties of the Green’s function are
(i) the symmetry relations
[t,u] = (=D)[—¢, 4]
= (=D, —u] = —[—¢, —u],
(i1) the recurrence relation GD = I = DG, i.e.,
z[t — 1, u] + wylt, u — 1]
—z[t+ 1,u] — ylt,uw + 1] (2.5)

The determinantal expression for the monomer pair
correlation along the diagonals (p, p + 1) and
(p + 1, p) is given by*

(2.4)

= B¢ Oou-

@@ ylp—1,p) = -;—x oiinal GHi=1,-,p,
where
bo =14 22[1,0], b, = —2z[l — 1, ]]
and
bo=(/n'+2:0+1,1
3. AN OUTLINE OF THIS PAPER

l=1.2,---. (26)

We first prove a relation between b, and by, for
general k, which enables us to reduce the correlation
determinant to a new perturbed determinant of
simple block structure. Then after inverting the
relevant Cauchy matrix the perturbation will be
expressed as an integral involving the Legendre
polynomial P,(cos 6). The integral is then evaluated
exactly for the symmetric and nonsymmetric cases
using the theory of the Legendre functions. From
the exact perturbation, the asymptotic values of
the correlations are found, which check with the
numerical estimates made in FS.

4. IDENTITIES

Because of the special structure of the Green’s
function, it is possible to show for general r and
positive and negative k that

i 0 (k even or zero)
b, — ‘1‘_ by = 2 1 ) (4-1)
=% (k odd)

where the b,’s are given as in (2.6). The fact that
this difference is independent of = enables us to
evaluate the monomer correlation exactly. Further-
more, it enables us to find the b,’s and their generating
function B(6) such that B() = >.%, bie'*’. When

4 See Ref. 1, Sec. 10, p. 1427, The factor 7 should read 2.
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7 = 1 the values of b, reduce to those given in F8.°
If we take for even and odd k the values &k = 2r
and 2r — 1, respectively, then we have to show

(1) 22[2r — 1, 2r]

= 2y[2r,2r +1] k=2, 42

() —2z[2r — 2,2r — 1] + 20y[2r — 1, 2r]
2 1
= e —1 k=2r—-1), 43
(iii) 2z[2r + 1, 2r]
= 2iy[2r,2r — 1] (k = —2r), (4.4)
@iv) 2z[2r,2r — 1] — 2iy[2r — 1, 2r — 2]
2 —1
=5 (k= —=2r+1). (4.5)

First of all, we verify the identity for the case

when k& = 0 because this is an exceptional case for

which the following analysis does not go through.
Now from definition (2.6),

bo — iby/r = 1 + 2z[1, 0] — 2i[0, 1]

=1—2p, — 2p,
=1-—2(p. + p,)
=0,
where
p. = (1/m) tan™ (7)
and
py = (I/m)tan™ (1/7) = § — p
as in FS.

And so we can proceed to the general case, in
which we have from the definition (2.1)

[2r+ 1,25 = @i_? ff:f Lz[cos (r + Da

T
and
[2s, 2r + 1] = (—2—#[[: ~ % cos (sa)
X [cos (r + 1)8 — cos 6] f& fig)-

‘We will use these two integrals in their exponential
form to prove the four identities.

5 See Ref. 1, Appendix B, p. 1430.
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WOk =
Starting with the case when & is positive and
even we have that

2z{2r — 1, 2r]

— -x—ﬂ- 2' ir(a+t+ - da dB

aemil R S brew B
and
20y[2r, 2r + 1]

— L Br ir{at < dd dﬁ

- s ffo e — 229 )

where

Ale, B) = (& + ") — 2” cosa — 3* cos B

= @a — v, COSa — 73 Cos B.

We note here the similarity to the random-walk
integrals on the square Ising lattice.® The only
difference lies in the simple relation between the
parameters @, v, and v, which causes the integrals
to become elementary.

Forming the difference of (4.7) and (4.8) we have

2z[2r — 1, 2r] — 2iy[2r, 2r 4 1]

1 2= r(at 2 —ta
“@r [l rea-e
dad

+ y’(l € ﬁ)} A( ﬂ) (49)
To evaluate this we change the variables such that
B=0—4 ¢ = 3o — B).

The Jacobian of the transformation equals

—2 and the unit cell [—m, = | —=, 7] of

the (a, B) space is doubled in the (6, ¢)

space. “4.11)
Whence
2z[2r — 1, 2r] — 2iy[2r, 2r + 1]

_ 1 2T aeis dé . —§(0+9)

=) ¢ o) [£°1 — € )

- de dqs
(1 — Y 4.12

s E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math,
Phys. 4, 317 (1963).
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Now
A, ¢) = 2" + y' — 2" cos (0 + ¢)
— y* cos (6 — ¢)
=2"+ y' — [(@" + ) cos 6] cos ¢
+ [(=" — ") sin O] sin ¢
= A+ Bcos¢ + Csing, (4.13)
where
A=2"+9,
B = —(@" 4 ¢°) cos 4, 4.14)
and

C = (z* — y’) sin 6.
Also we have that
2l -1+ 1 — ¢
= z* 4+ 9 — 2’ cos (0 + ¢) — ¥* cos (8 — )
+ i[2* sin (8 + ¢) — ¢/ sin (6 — ¢)].

The imaginary part of the integral is identically
zero since we started off with real integrals in (4.6).
The real part of (4.15) equals A(6, ¢) and hence
gives as required

1
27|' 0

i(0-¢)]

(4.15)

2
&do=0 (r0). (4.16)

(ii) To prove the second identity we will first
evaluate (—i/7)b;, and then use the first identity
by = (":/T)bzrﬂ- Now

(—3/7)bs, = 2iy[2r — 1, 2r]

_ 1Y 2' ir(atfypy __ -ia da df
=ag [[ eru -y @
which on changing the variables becomes
_ﬂf Ll d0
1 — e—t’ﬂe—l'¢
X fo AT Bose + Comg 2 419

This can be calculated with the aid of the standard
integrals

2x ind
I, =21_7r o A +B:os:¢+ C sin ¢
=\4*-B -yt (4.19)
and its conjugate
I, =X(4*-B - )4, (4.20)
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where

A2>Bz+02

and (4.21)

_ (4" B -
B —

Substituting in (4.18) we get

1 27 _ e-—ioe-u
I(o) f A+Bcos¢+Csm¢d¢

1 —e "
- B -
(B + iC) + Ae"" _ et
TB+OA B - B+iC
Now from (4.14)
B 4-iC
B+ iC + 4
B+ =
A'—B —- (=
and finally
(A* — B* — ¢} = 2zy |sin 0).
Equation (4.22) gives

1 — e "%

(4* - B* — ¢%*
_ 4 sing e’ i 1
zy Isin 0! [1_2 + ez.'o] yz[Tz + ez-'a]

and its conjugate, which we will need later,

1 — e
(4> - B* - ¢}
—i sin 0 e ¢! )
zy |sm 0' [1_2 2i0 + 1] y [ 2 240 + 1]

Hence for » > 0,

C

A iC

-

(4.22)

e [r" + &7)(r = 2/y),
—24y” sin 0,
x4 + y4 + 2x2y2
4z sin’® 9,

(4.23)
cos 24,

I(6) =

(4.24)

I(6) =

(4.25)

—% by, = 2iyl2r — 1, 27]
_1 27 e(2r+l)|'6 Sin 0
T2 Jo [ + &) sin 6]

2 62"1'0'
f x40
o [ +e"]

The second integral can be written as

2r—1
I.f 2 &
2 c 1'2 +22 !

where C is the unit circle and z = ¢*°.

do

iT

+ o (4.26)
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Using the residue theorem it becomes
(=D (r<1
(=D % (r=1 (4.28)
0 (r>1).

In the first integral, the factor sin 8/|sin 6| changes
sign at 8 = = so if we split the range up into the
intervals [0, «] and [=, 2], and change the variable
in the second range such that § = ¢ 4+ w, we arrive
at

_ l z2r dz
7t Je, ” 42
where C, is the top half of the unit circle and C,
the real interval (—1, 1). On application of the
residue theorem to the closed contour C; + C,, it
is easily seen to be equal to

(- (r < D)
3(—D% (r=1
0 (r> 1.

The last term clearly cancels with (4.28) and so
for all 7

— (¢/P)ber = 20y[2r — 1, 2r]
2 1 x2r
R AR

On changing the variable to £ = 7 tan u it can be
seen that the integral satisfies the recurrence relation

(4.29)

3 dz + (4.30)

mf,f +z

—— dz. (4.31)

er = [71—2'/(27' - 1)] - Xz,-_g (4.32)
which can be solved to give
— _7:_ — 2_ —1yr. 2r-1 (_];_)
" by, = ﬂ.( )7 I:arctan
1 a_1-2¢
+ }'_‘{( ) ] (4.33)

The first term clearly diverges with r if » > 1.
We are now in a position to prove the second
identity using (4.33) and the first identity. Now

bor—g = (1,/ T)bzr—1 (4-34)
and thus
b2r—l - z b2r = 7'2[""1: b2r—2] b x bar.
T T T

From (4.33) it can be seen that all but the last
term cancel and so

(4.35)

(4.36)

1
bzr—l - = bzr =
T
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proving the second identity. We note that this is
independent of 7.

(iii) For negative indices b_, = (i/7)* + 2z[k+1, k]
and on cancelling the constant term we can write

b — (§/7)borer = 22k + 1, k] — 2iylk, & — 1]
k=12, - 4.37)

In the even case this becomes

y 27
boae = S = s [P -
27 3 d
+ 46" - D) gl (439

Here we used the negative exponential represen-
tation of (4.6). On changing the variables to (6, ¢)
it is clear that the ¢-integral is the same as in the
previous case (4.12) and since

2
___f e—2r¢'0 d0 = 0 (T o 0)
0

the identity follows.
(iv) In order to prove the last identity we will

first evaluate
. \2r+1
- 2 b—2r + (2)
T T.

in a similar way as was done in (ii).

(/1) — (i/D)boye = —20y[2r + 1, 2r]
zxy 2 ri(a+p) . e da dﬂ
= @y ff = G, B
— }_{Z{ 2r50 da 1 - 61(0+¢)
= o J, f A FBosg F Caing

(4.40)

'The second integral is the conjugate of (4.22) and
by (4.25) we get

1 2 e(2r+l)iﬂ Sin 9
2 [+%** + 1] Isin 6]
E fZI' e(2r+2)0’0
2r Jo % 41
‘which can be written by the same argument as
used before as

1 z2r 2r+l dz
m Jo, 7+ 1 “+1 dz + f 21 + 1
Application of the residue theorem shows again

that the contributions from the possible poles cancel
and we are left with

—2y2r + 1, 2r] =

de,  (4.41)

(4.42)
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2 1 2:2"
2uy2r + 1,2r] = 7-;_;“/(; ?m dr. (4.43)

Taking a factor of 1/7° out of (4.31) and replacing 7
by 1/7 in (4.33) we obtain

2yl2r + 1, 2] = (/md)-(— 1) 7177

X [arctan (=) + E g——I)L;;:I (4.44)
From Part (iii) we have
2z[2r + 1, 2r] = 2:y[2r, 2r — 1] (4.45)

and using this it follows that

= ¥/ D)oz

= 2z[2r, 2r — 1] — 2dy[2r — 1, 2r — 2]

= —720y[2r + 1, 2r] — 2iy[2r — 1, 2r — 2],
(4.46)

b—2r+l

which by (4.44) reduces to

@/x)-[—1/@2r — 1)],

and thus completes the proof of (4.1).
When 7 = 1, the results simplify somewhat and
(4.43) can be written in terms of the psi function

¥(@) = I'@)/T ().
5. THE GENERATING FUNCTION

The calculations of the previous paragraph enable
us to deduce for + > 1 the generating function
B(8) of the b,’s in a closed form

B(6) = Y be™. (5.1)
k=—~m
From (4.17) we see that
2
b =5 [ & a0 [~myI0)], (2
27(' 0

where I(6) is given by (4.22) and (4.25). Equation
(4.39) gives

*\ 2r 27
by, = <3) + l—f ¢ do [~ rzyI(6)] (5.3
T 27" 0
and from (4.34) we have
2r
bypyy = 1 e~ g6 [irzye’ I(6)]. (5.4)
27!' 0

Finally Eq. (4.45) shows that

N\ 2r—1 2r
bosgesr = (2) + 21— e® 1 4o [ir’zye’’ 1(6)].
T. T Jo
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Hence the generating function for the even terms
is, apart from the terms (i/7)*’,

1 271 — g0+
B0 =~y [ e db (69)
and similarly for the odd terms,
) b1 [P 1 — efe
_ 2 09.___ L €
By(6) = izyr'e o fo Soa W 6D

Now from (4.25) we have that

1 27 1 _ es'(0+¢)

wd AGH @
ie’’ [sgn (sin 8) + i-re"]
zy 14 7 68
Adding terms we get
. < if
B,(6) + Bo(6) = m”[sgn (sin ) + ire ] (5.9)
1+ ire'

From the terms b_, we also have the contribution

ire'

i (i)ke—ika - 1+ 7:1'6’.9

keo AT divergent (r < 1).

(>1)
(5.10)

And so the generating function is undefined for
r<1.Forr>1

. . i
B(6) = m"[l + Sglll (j_migf o ] (5.11)

Here we thus have an example in which some of
the entries in a determinant diverge but the value
of the determinant still decays to zero. The fact
that some of the entries do diverge is a property
inherent in this type of problem, and the divergence
cannot be removed by elementary transformations,
as will be seen in the next paragraph.

We will see that for + > 1 the Toeplitz repre-
sentation of the determinant is the most convenient
one, whereas for r < 1 the perturbed representation
of (6.5) is the most satisfactory one.

6. REDUCTION OF THE CORRELATION
DETERMINANT

For convenience we will define a new variable
f. = 3mib, so that the correlation becomes

wiz,y|p—1,p)

1127 . .
= 2—'1; I:;:l lfi—i+1| ] = 1: *c P (6'1)
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Equation (4.1) becomes
o= @/ fowr = { 0 Goven) g0
1/k  (k odd),
and so
fo + (/) fesz = 1/k (k odd). (6.3)
To reduce the determinant |F,| = |f.-;-1], we use

(6.2) and perform in succession the corresponding
operations:

column (k) — (¢/7) column (¢ — 1),
k=pp—1,---,2. (64)

After these operations we are left with a deter-
minant whose structure depends on p.

1 —1
fo 0 =10 =30 —
f2 1 0
f 0
IFDI = .
;%5 1 0
1
, 0 — 0 1
f p_2 p odd
1 —1
i 0 —-1290 -3 ‘p—_—z' 0
: -1
fz 1- ) p_—-E
. O
or |-
0 N | 0

(6.5)

It is clear from (6.2) and (6.4) that apart from the
first column, the entries in the determinant are
either zero or the reciprocal of an odd integer and
that along any one diagonal the entries are the
same. Furthermore from (4.33) it follows that the
entries in the first column diverge with p if » > 1.
By symmetrically made row and column inter-
changes we can transform the determinant into
block form with all the zero entries off the diagonal.
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If we denote the following matrix by D, and its
determinant by A,,

1 —1
1 =1 =3 53
% 1 -1
D, = . , l.e.,
1
5
-1
1 1
-1 = - 3 1]

dy =[1+26—7]", (6.6

then A, represents the spin—spin correlation at the
critical point along the diagonal of a square Ising
lattice. The close analogy between the two corre-
lations becomes apparent. After the row and column
interchanges the determinant |F,| has the following
structure:

Ful = [P E T2 O gy
A, D,
Ian—ll = (D” + Y”) 0 ’ (67)
An—l Dn—l
where
[ — D ]
(h— 3% o
n= 25, 7. - :
1
_( 717 o — 1)
and
f2n
4,= | 0 | @69
fa
From (6.3) we see that
—fa
Y. =% ",f“ ol (6.9)
_f2n+1

Hence
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IF,| = D, + m-{“" ® =
Au—l (p =2n — 1)

A, (@ = 2n)
AA,, (p=2n-1).
(6.11)

If we denote the inverse matrix of D, by T, = [t,;]
then the matrix product D;*Y, becomes:

= II + D:lYnI'{

-
el (6.12)
—Ma

where

mnm = [fstu -+ fstu + - 4 f2n+ltln]/1'2' (6-13)
It follows that
L+ DY) =1~ =1- 3 Db (g1g
k=1
and that

oz, ylp—1,p)

SSE

}'(1 - ). (6-15)
AnAn—l

We can get a compact expression for y (dropping
the subscript) if we use the integral representation
of fars: for positive k.

Now from (4.31) and (4.34) it can be seen that

f2k+1 = %‘Fibzkn = %W’i'TBI:— 5 bzk:l
= nir®- 202k — 1,2k].  (6.16)
Thus
1 2k
farer = 7'2_/; 12::_ e dzr (6.17)
and so
7 = x s (6.18)

[ k-lT +x

However this is not the most convenient form of
the integral and we transform it using partial
fractions to

1 .

- __I_ ok—1 | X — 1T
faba 4 f_l x [:c + if] dz
_T f 2 [L—_ﬂ] dz
1)..° letirle

T if
T okid | €
= — — | dé,
4 -/; ¢ [ R ]

(6.19)



MONOMER PAIR CORRELATIONS

where C, is the top half of the unit circle. When
7 = 1 this reduces to

forsr = if;" sin (2]00)[

since fy.; 18 real the imaginary part vanishes.
In (6.19) we write

2 —ir 1 2(r/1)

1 —sin @

po—— jldﬂ; (6.20)

24+ ir z 4+ ir
and since 7 ¢*"*’ d§ = 0 we have
2k 8
1 LA S L tlx

== 2 = do.

= = - 6.21
K 2t )y e + ir ( )

Before we can proceed with the evaluation of »
we have first to find the inverse matrix T, = D;?,
which is done in the next paragraph.

7. THE CAUCHY MATRIX INVERSE

A Cauchy matrix is defined to be a matrix which
has the form

1 n
Cn"' l:ap+ba:|lpyq - 1) .

Firstly we note that both D, and its “reflection”
RD,, where

1 0
are Cauchy matrices and that RD, is in fact a
symmetric Hankel matrix.

The latter is clearly so for all Toeplitz matrices.
Furthermore one finds that D, has complex eigen-
values whereas RD, has real positive eigenvalues.
Although it is very difficult to obtain the general
eigenvalues of either one we can still find their
determinants by either

(i) triangulation, which is possible because the
matrices are real and have non-zero principal
minors; however which is rather cumbersome,

(i) or by the reduction method for Cauchy
determinants.

Once we have found the general Cauchy deter-
minant,” it is a simple matter to find its inverse
because all its minors are again Cauchy deter-
minants.

" G. Pélya and G. Szego, Aufgaben und Lehrsdize aus der
Analysis I (Springer-Verlag, Berlin, 1925), Chap. VII, p. 98.
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Let
1 n
An B lC”l B ap + ba 1
1 - . 1 « o 0 1
al 4— bl ay 4_ bq a, 4_ bn
= -1 .. 1 Lo @
ap + bl av + ba ap + bﬂ
1 Y 1 > e 1
an + bl Ay + bq a, + bn
On performing the row operations: row (k) —

row (n), k = 1, --- , n — 1, and taking out the
common factors followed by the column operations:
column (¢) — column (n), k = 1, --- , n — 1,
and taking out the common factors we arrive at
the recurrence relation

n—1

I1 e, — a IT (5 — ]
A, =2 = Ay, (72)
II la. + b T le; + b
which gives
H la; — a;] H 6. — b))
A, = = 121 , (7.3)

H H la: + b,]
i=1 j=1
where the denominator is the product over all the
denominators in A,.
To find the inverse matrix C,', we use the fact
that

[C;l]ar = (_ 1)p+aAw/Am (74)

where A,, is the (p, ¢) minor in A, i.e., one that is
obtained by omitting the pth row and the g¢th
column in A, or equivalently all the terms which
contain a, and/or b,. In the numerator these terms
are

»—1

H [ap - ar] ri!l [ar - aza]

r=1

(7.5)

and

I, - 63 TI 1 — b

r=1 r=g+1

as can be seen from the triangular array.
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In the denominator we have to omit
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I1 le, + 5.1 II [a. + bd)la, + b7, (7.6)
r=1 yoe]
where the term [a, + b,] is counted only once.
Hence
(=17 11 @, + b1 I [a. + blla, + b7
[C;l]cv = »=i =} r=ql_l n . (7.7
III {a,, - C&,} IIl [CL, - av} II; {:ba - br] Hl [br - bq}
o r=p+ - re=a+t
To apply this formula to D, we must put 2": e X one A Z”:emm;e crie,
= — = P k=1 i=0
ap - 2P 1 P; q 17 :n- (7.8)

« =2 — 2¢q.

Substituting these values in (7.2) and (7.7) we
see that

An-—l

= @2n — D[CFAT (7.9)
and that
¢ = Iw 2p — 1120 — 24 + 1]
@2t [2p — 2¢ + 1]
X CRPCRPCPew R, (1.10)

This shows that all the entries in the inverse matrix
with p 2> ¢ are positive. We rewrite this to bring
out the character of the generating function of the
entries in D, as

f = 2p — 120 — 2¢ 4+ 1]
@ 2p - 2¢ + 1]

oo oo,
(7.11)

where C7} = (2. (—1)"/2" which tends to zero
as (—1)"(en)"}. We are mainly concerned with the
first row of the matrix T, i.e., with

t, = n — DO -CGHLoH, (7.12)

which shows that ¢, = ¢ ,_,+;. Furthermore both
D, and T, are symmetric about their second main
diagonal.

8. EVALUATION OF THE PERTURBATION
INTEGRAL

Substituting Eq. (7.12) in (6.21), we have
7= (2n — I)C;}:l

lfr < SEif vk % 1
X 5 ; ée chol, +i7da. 8.1

eiﬂ

To investigate the sum, we lower the index by 1 so
that

N -
— e(N-}-Z)iG Z 8(23*5’)680«;*0;{1 , (8.2)
l=0
where N = n — 1land !l = k — 1. This can be

identified as (—1)"e™ " *°*Py(cos 6); where Py(cos 6)
is the Legendre polynomial which is defined by

[(1 - hz)(1 - %)T - épN[iiil@] 1Y, (8.3)
50 that

N
PN(COS 8) = (_1)N Z e(ZI—N),-gCi_icl_v%—l
=0

N A (N-1)
=(=D"2 X cos (N — 2p)0C; 3,  (8.4)
p=0
with a last term®
ey when N = 2s
and (8.5)
Cidy-,Cidvsy when N = 2s+ 1.
Using these results, we see that (8.1) gives
7= [@2n — D(=D"CA]
1 T ei(N+2)6
X 5 fo Pyfeos 0) $——-do, (8

which in the symmetric case (r = 1) with the aid

of (6.20) can be written as

7= [@n — D(=D""CA]

‘ 17 . 1 —sin @
X ! j; Py(cos 6) sin (N -+ 2)0[m~“:’ de.

8.7

For convenience we denote
[ — D(=1)"CA] 7y (8.8)
¢ L. Robin, Fonctions sphériques de Legendre et fonctions

rique
spheroidales (éauthier—ViHars, Paris, 1957}, Chap. 1, Sec. 6,
pp. 13-14.
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by {a-i. From (6.17) and (8.3), an alternative
form for ¢{,_, is found to be

1 nt 1 -1
- =f0 :%—Q:—P[” *‘295 :ldx, (8.9)

which could be used together with the fact that

n=5=]

However we will concentrate on the integrals (8.6)
and (8.7). It is characteristic of the problems
involving monomers that the behavior of the system
is different for finite odd and even separation
distance N. In the asymptotic limit, however, they
must have the same behavior as will be observed
in the case of the monomer pair correlation.
We now prove that

1= by ]
Q..[—isinhg (£ =
X 1Qaa[0 — 0]  (r=1) (8.10)

Q._.[i sinh §] + wiP,,[isinh £]-(¢* = = < 1),

where Q._.(x) is the Legendre function of the
second kind defined on the cut as’

Qn—l[O :i: iO] = Qn—-l(o) + %ﬂ"iP,,_l(O).
Starting with the integral from (8.6),

1
_N;%_'N);E]

r>1)

(8.11)

0 (m < N)

J(m) = '/: Py(cos 6) sin m6 d6 = JO (m + N even)
2m — N+ 1)(m—-—N+3)---(m+ N —1)
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1 T et’ (N+2)8

= - Py(cos §) —————— db A2
v =57 [, Patoos 0 F—— a0, (812)
we see that when 7 5 1 the denominator of the
integrand can be expanded by the binomial theorem
in series which will differ for + > 1 and » < 1.

We will use these expansions combined with
the theory of the Legendre functions to evaluate
¢v for the three cases + > 1, 7 < 1l and 7 = 1.

(i) When r > 1 we expand the denominator

1 @ (i>p+l oo
—_— = - - ? 8.13
e — /1 1; T ¢ ( )
so that
1 0 'L p+1

w = T2 ;, (‘T)
X f Py(cos 0)¢ 2% dg.  (8.14)

0

The sum and the integral may be interehanged
by comparison with a geometric series.

Now from the theory of Legendre functions'
we have the two standard integrals

I(m) = f P(cos 6) cos m@ do
0

0 (m>N)
=130 (N — modd) (8.15)
(—=D¥C;}CH, (m =N — 2p)
and
(8.16)

(m —N)Y(m —N+2)--- (m+ N)

and the Neumann integral representation of Qy(u),"

Qn(n) =%f_1:;§y—)ydv pE(—=1,1)

_ T Py(cos ¢) sin ¢ do
=%, 1 —2cosé+2"’ (8.17)

where 24 = 2z + 1/z and p does not lie on the

cut (—1, 1), i.e., |z| > 1. It follows that for |2| > 1,
on expanding (1 — 2z cos ¢ + 2°)7%,

9 See Ref. 8, Chap. I, Sec. 12, p. 34. See Ref. 15.
10 See Ref. 8, Chap. I, Sec. 11, pp. 27-29.
u See Ref. 8, Chap. I, Sec. 14, p. 41.

(m=N+2p+ 1),

Qn(w) = D 2" fo Py(cos ¢) sin pe do
_2TIWNV A D g

3 1
TGN + 2) (%’N+1’N+‘ _2)'

22
(8.18)

For values on the cut one has to put u = cos @ -+ 7.0
and z = ¢’ so that by an extension of Abel’s
theorem'” the relation holds for all |¢] >'1, 2z # 1,
i.e., on the unit circle for all 0 < 6 < 2.

12 See Ref. 8, Chap. I, Sec. 14, p. 43.
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Thus on putting z = 7 in (8.17) we get

f Py(cos ¢) sin ¢ do.

c0s & (8.19)

Qn(0) =
Using the standard integrals in (8.14) we see that
the cos (N + p 4+ 2)6 terms drop out and we are
left with

v = —5 Z( ) f Py(cos 6)
Xsin(N +p + 2)0do
= —% qu (%) fo Py(cos 6)
X sin (N 4+ ¢+ 1)8do + 3J(N + 1),
where

JN + 1) = fo " Py(cos 6) sin (N + 1)6 d6

= 2[@n — D=L (V =0 — 1), (8.20)

and thus

TN+1 o iN+2r+1 x
= S i

Xsin(NV+2r+ 1)6do+ 3JWN + 1)
which by (8.18) becomes
tv=3N+1)

~1(5™e [ﬂi_/j]
2\1z v 2
Substituting this in (8.6) together with the fact
that
2n — D(—1)"'Ch,
we arrive at

=1 — [n(=1"C;]

(8.21)

= 2n)(=D1"C;},  (8.22)

X (D) Qual—isish it = r > 1, (829)

which gives the first relation of (8.10).
(il) For 7 < 1, we expand

— (/)" - % ei(N—r+l)0.(_7:)'
— (7/7) =0 i
and so by (8.12),

Py(cos 6)

N+2 '
. T
siee = (5 [ & — (/)

+ > ( ) f Py(cos §)e* V14 g9,

r=0

l(N+2)0

(8.24)

do

(8.25)
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Considering the sum first we see that all the terms
involving sin (N — r -+ 1)6 vanish apart from the
first one which gives «J(N <4+ 1). The integrals
involving cos (N — r + 1)6 give

N

: ( ) f Py(cos 6) cos (N — r + 1)6 dé

- (e

1 kg
+ 5 fo Py(cos 6) da}-

The additional term comes from the definition of
the last term in Py(cos 6) and vanishes when N
is odd.

In the first integral of (8.25) we expand the
denominator as

r

(8.26)

©

1 = Z (E) e—(pn)w ('r < 1)

e’ — /i 0

(8.27)

and so get

© N+p+2
> (—) f Py(cos )¢V dg.

p=0

On splitting this up and using the standard integrals
the sum involving the cos (p + 1)6 terms becomes

G R ol

1 L
-3 fo Py (cos 6) do}, (8.28)
and the remaining sum reduces to
N+1 . .
__z(I) QN[M]' (8.29)
’L 2
Hence
™ Py(cos 6) do
o & — /i
1 . . 3 ..
== {QN[z sinh ) + % P[é sinh £]
-3 fo Py(cos 6) de} , (8.30)

where ¢™* = 7 < 1. Adding (8.26), (8.28), and
(8.29) one obtains directly with the aid of (8.22)
that

= 1= (o= 1C(3) 1Quuilisinh

~+ xiP,_,[¢sinh £]}. (8.31)
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The case + = 1 can be considered as the limiting
case of the other two when » | 1 or r T 1. We can
either let r — 1 in the final results or put r = 1
in the original integral expression for » and evaluate
it as such.

Taking the limit 7 | 1 in (8.23) will in fact give
the value of 9 at + = 1 because

(i) In (8.12) the limit » | 1 may be taken inside
the integral since there are no singularities on the
contour and the integrand is well behaved (e.g,
bounded).

(1) In (8.14) the Limit r | 1 may be taken inside
the summation. This is permissible since the series
representation of Qy[0 — ¢ sinh £] is still valid at
r = 1, i.e.,, £ = 0. Clearly the same holds if we let
r 1 1 in (8.31). This gives on using (8.11) that
Q.[0 + 0] + mP,4[0] = Q,[0 — 70], which
is the same as was obtained from (8.23). As expected,
the asymptotic series will show the same behavior
near r = 1. To evaluate {y directly at r = 1,
without referring to series expansions, we make
use of the BEq. (8.7),

4fy = fr Py(cos 6)

— gin @

X sin (N + 2)0[ o ] de, (8.32)

and consider the even and odd cases separately.

This integral is essentially the sum of elementary
integrals since either sin (N 4 2)8 or Py(cos 6)
contains a factor of cos 4 depending on the parity
of N. When N iseven, say N = 2s, then the identity**

sin 2(s 4+ 1)4
cos 6

2+l

= 2(—=1)° 2 (=D"'sin (2k — D)8 (8.33)

can be used to give

841

4, = 2A=1" 3 (—n*“fo Py(cos 6)
X sin (2k — 1)6(1 — sin 6) d6 = S, + S..

The only contribution to the first sum S; comes
from the term with & = s -+ 1 and gives 2J (N + 1).
The second sum S, can be calculated using the
addition formula for cosines and the standard
integrals together with (8.4). Collecting terms gives

1] Ryshik and I. Gradstein, Tables (VEB Deutscher
Verlag der Wissenschaften, Berlin, 1957), p. 31.
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= [@n — D(=D"CL]™
+ in(=1)"TP.(0).  (8.34)

For odd N, say N = 2s + 1, the term Py{cos 6)
contains a factor of cos @ so that

4fo0ny = f Po(oos ) 1

cos #

N + 2)6

—~ ${cos (N + 1)6 — cos (N + 3)8}]1 d6. (8.35)

The last two integrals vanish; which follows if we
put

Py(cos 6)
cos 6

= 3 (=1

p=Q
% [1 +2 5 (=1 cos m] (8.36)
k=1

and then use the addition formula for cosines and
integrate. The first integral becomes

4500 = JIN + 1

T sin 6
+ fo Py(eos 6) 52— cos (N + 1)6 do.
This can be calculated with the aid of the identity*

cos 2(s + 1)4

— (__1)\2+1
cos § =D

841

X [—1— — 2 2 (—=1**" cos 2k — 1)0] (8.37)

cos 0 =1
and the standard integrals to give

4801 = 2J(N + 1) + 2(—1)°Q:,.,(0).
Hence when 7 = 1,

7 =1+ [n(—1)"C;*]

x {(*D’sz(o)(N =2+1)  ge
(=1)"""$xP, (0)N = 2s).
Now if we use the identities®
g _nT| _TGn)
P,_{0) = 7% cos [(n 1 2] TG + 1)) 539

Quui®) = —ttsin | = D5 | b

then it is clear that (8.38) reduces to (8.10).

4 See Ref. 13.

16 The Bateman Manuscript Progect, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1,
Sec. 3.4, p. 145.
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Furthermore we get
I'(3n)
2 T'(3ln + 1))
_nTn+3% _ TGn
" 2Tm+ 1) TG + 1))’

from which the asymptotic decay of 1 — % will be
found at 7 = 1. This completes the proof of the
exact result (8.10) from which the exact result
for the pair correlation follows:

e,y 12— 1, = & (2 s, m-vren(3)

1— 7= [n(— 1)"0“*]

(8.40)

Qua[—isinhg] (¢ =17>1)
X 4Qua0 — 0] (r=1) (8.42)
Q._;[¢sinh ] + P, _,[isinh £] (€ = 7 < 1),
where
- = I @ — DIGAT
= [REeDICH B ong, - 3+ 11 (843)

T T(s)T'(s)
9. ASYMPTOTIC VALUES

In this paragraph we will find the first two terms
in the expansion of the correlation as a function
of radial distance r. We consider the symmetric
case first and take as our starting point Eq. (8.40)
and use the asymptotic series for T'(n),

I(n) ~ e "n" }(2n)t

1
[ 1+ Iz—n + 288n2 + 0(7?)]'

Using the duplication formula we find that

IGn)  _ 27'TGn)
T'4n + 1] *I‘(n)

(12) [1 tatma 0(1%)]

(—=1)"C*.27*" shows

9.1

9.2)

A similar analysis on C;* =
that

Cit ~ ((;nl)) [1 &t 128n2 + 0( )] ©3)

Combining these relations in (8.40) gives

1 - nN(l/\/2-)[ + -~ + 128n:|'

The next step is to find the determinant |B,| for

94
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large p; however we must consider the cases of
even and odd p separately.
If p = 2n then

IB,| = (2/me)” AL(1 — 7). (9.5)
Now since

2\" E 1

<7_r> 4, ~ nr I:l - 647&2:‘ . (9.6)
where £ = .70338 ... and which can be obtained

exactly from (8.43) after a detailed Euler-Maclaurin
analysis, we have on combining (9.4) with (9.5)

B 1 3

7 |B,| ~ [1 + - 3—2?]

For p = 2n — 1 we arrive at the same expression;

however the computations are a bit more involved.

The last step is to express (9.7) in terms of the

radial distance r from the origin to the monomer

at (p,p — 1). Clearly * = p* + (p — 1)°.  (9.8)

Solving the quadratic for p and taking the positive
root gives

9.7)

p=31+4+@" — D~ + 1/rv2] (9.9
and also
p~t ~ @M1 — (1/2rv3)] (9.10)
and
P~ (V2 — (1/rv)]. (9.11)
Substituting in (9.7) gives
? |B,| ~ (/ML — (1/4%)]  (9.12)

and hence
do(z, z | p — 1,p) ~ 2Bi/zH1l — (1/47)], (9.13)
where

B, = 2"®E and B = 2B, (9.14)

This result verifies the numerical calculations
done by FS which gave —0.26/7° as their second
term.

In the nonsymmetric case, we start with (8.10)
and use the asymptotic expansions for the Legendre
functions'®:

L]
Q.[cosh {] ~ (};) _\/2IS1=nh§ bt

X [1 - (if:r_“ll)] 9.15)

18 See Ref. 8, Chap. V, Sec. 83, p. 228 and Sec. 84, p. 231.
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and

P,[cosh {] ~ [mn(¢’ — 1)]7?

(n+ D¢ 1 <€2r — 3>:|
X {e [1 8\ _ 1
ot 35 1 (3% — 1)]}
nl fix = .
+ e e [1 8n <e2{ 3

Forr > 1l weput { = £ — %7 so that cosh { =

(9.16)

—4 sinh & sinh § = —7 cosh fand f = 7 > 1.
Substituting in (9.15) gives
Qn—l[—i Sinh ‘E]

1_r4} " [ L(Tz + 3>:|

~ (n) (1 + 1‘5’; L+ 8n\r’ +1 (9.17)
and thus

1— g~ + )7 + 1/4n(-* + D). (9.18)

As 7 | 1, this clearly reduces to (9.4). For 7 < 1
we put { = £ + 3ir and see that cosh { = ¢ sinh §,
sinh ¢ = % cosh £ where ¢™* = 7 and ¢ > 0. Whence

Qn—l[i Sinh E]

r} Tn—l l_[ l_(l +37_2):|
~ (ﬁ) ar -ttty /) 019
and

wiP,[i sinh £]
x\! ;{_[ L(3+T”)]
“’(ﬁ) A vl R Ve
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n—1 2

+ 5 [1 + SLn (—————11 j_ 37’; )]} (9.20)
In the expansion of @,_,[¢ sinh & + wiP,_,[¢ sinh £],
it is clear that the second part in the expansion
of P,_, must cancel the term coming from Q,_,
since at r = 1 the two terms are identical. Combining
(8.10), (9.3), (9.19), and (9.20), we arrive again
at (9.18) but this time for + < 1. Going back to
the correlation we finally have for all 7 that

do(z,y |p — 1,D)
277

SN,
pr*[1+72] 1+2p(1-|—72)

il 2 Y ()]
= l:x2+y2 1 -{—27\/2 ) ) (9.21)

=

in which the second term drops out when = 1.
We note that the sign of the second term changes

as we move across the diagonal from (p — 1, p)

to (p, p — 1), i.e., if we interchange the z and y

activities.
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For the Schrédinger equation in R¥, with a potential V{z; - -
the following problem is solved: Given a monomial M(z; - - -

- x1) of the type considered by Kato,
;) of degree n in the coordinates, find

sufficient conditions on the initial state 4 such that Me—i#% is continuous in ¢ and increasing in norm

not faster than [¢|» as || — «. In the special case where V(z; ---

z1) is a bounded C*®-function with

bounded derivatives, the result implies that (u, t) — e~*#iy is a continuous mapping of $(B!) X B
onto $(R?), 8(R') being the Schwartz space of rapidly decreasing functions in the usual topology.

1. INTRODUCTION

HE problem considered in this paper came up
in connection with a discussion of the cluster
properties of nonrelativistic multiparticle systems.*
In trying to apply methods similar to those which
proved effective in the relativistic case,” one faces
at once the difficulty that nonrelativistic particles
can move with arbitrarily large velocities. The ques-
tion then arises what conditions may be imposed
on the initial state u of the system such that e™*‘u
describes, in a sense yet to be defined, particles
which are localized at any time ¢ and move with
finite velocities. For the Schrédinger equation it is
futile to describe localization in terms of supports
of wavefunctions. What we can use, instead, are
the expectation values of the coordinates or, for
more detailed information, those of arbitrary mono-
mials in the coordinates. The problem then takes
the following form: Given a monomial M of degree
n in the coordinates, find sufficient conditions on the
initial state » such that e”*#*y is in the domain of
(multiplication by) M for all ¢ and such that Me™*"y
is bounded in norm by const (1 + [¢])™.
Illustrative is the example of the free particle in
one dimension, with coordinate z, momentum p =
—4id/dz, and energy H = p°/2. Formally,

and it suffices, apparently, to require that

v € () D@'p"),

k+msn

-—nd
xe” T Yy

where k, m are integers > 0, and where D(4) denotes
the domain of the operator A. In the case of inter-

* Supported in part by the U, 8. Air Force through the
Air Force Office of Scientific Research.

{ Present address: Seminar fiir theoretische Physik der
ETH, Ziirich, Switzerland.

1 W. Hunziker, J. Math. Phys. 6, 6 (1965).

2 K. Hepp, Helv. Phys. Acta 37, 659 (1964), and J. Math.
Phys. 6, 1762 (1965).

acting particles we shall see that it is enough, es-
sentially, to replace in this condition p by H.

2. KATO POTENTIALS

Let R’ be the real Euclidean space of ! dimensions
with Cartesian coordinates z = (z, --- z;). Let
p;, § = 1 --- I, be the usual self-adjoint operators
on L’(R') representing the momenta (formally,
p; = —id/dxz;) and H, = D !, pi. Let V(z) be
a real measurable function on R* and V the operator
of multiplication by V(z), defined on all funetions
u € L*(R") for which this product is again in L*(R").
Furthermore, we require V to satisfy the Kato con-
dition®:

D(H,) C D(V), and there exist constants a < 1,
b < =, such that, for all u € D(H,),

[1Vull < e |[Houll + b {[ul]. ®

Then H = H, + V has the domain D(H,) and is
self-adjoint.> These are the properties of H which
will be tacitly assumed in the rest of this paper.

An immediate consequence of (1) is that the
norms ||Hul| + ||| and [[Hou|| + |[ul| on D(Ho)
are equivalent. Therefore, since H, is the closure of
its restriction to the Schwartz space $(R’) of rapidly
decreasing functions, the same is true for H.

Purely as an illustration—and not for later use—
we state conditions on V(z) which are more trans-
parent than (1) and imply (1) Let V(z) =
> »_. Vi(z) and suppose that for each % there exists
an affine transformation (z, --- z;) — (%, --- Y1)
in R' such that V, depends only on g, - -« ym, m < It
Viley -+ ) = Uelth -+ ym). If each U, can be
written as

3 T. Kato, Trans. Am. Math. Soc. 70, 195 (1951).
4 E. Nelson, J. Math. Phys. 5, 332 (1964).
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with U? € L*(R™), U € L°(R™), where
m/2 <p (3

and

2<p, @

then (1) bolds, and a can even be chosen arbitrarily
small (at the expense of increasing b). If the system
consists of a (finite) number of particles in R® inter-
acting via two-body forces, then m = 3 for all k.
Equation (4) then requires that each two-body
potential, as a function of the three relative co-
ordinates of the two particles, belongs to L*(R*) +
L°(R?), in the sense of (2). For many-body forces
one has m > 6 and sufficient conditions follow from

3.
3. RESULTS

Definitions: z" = zP'a3* --- 23', n being the
multi-index (n, --- n;) with n; integer > 0; [n| =
>.in;;n = 0means |n] = 0;k < nmeans k; < n;
forall j; k < nmeans k < n and |k| < [n].

For any multi-index n, 2" also denotes the operator
of multiplication with the function z", defined on all
u € L*(R") for which this product is again in L*(R’).
So defined, z" is self-adjoint (and different, in general,
from the monomial z* of the operators z, - -+ ).

z", ; and 2", ;; denote first- and second-order partial
derivatives of 2" with respect to ;. They are again
monomials and thus defined as operators on L*(R’).

For any multi-index n we define a linear subset
D, of L*(R') and a norm || ||, on D, by

D.= () D@H"),
mslhnslilkl
lfulla = sup  |la"H"u]l,
meinielkl

m integer > 0.

Theorem 1. Under the assumptions stated in Sec.
2, the following holds for any multi-index n:

(a) D, is invariant under the unitary group ¢ **".

(b) For any u € D,, e ***u is continuous in ¢
in the sense of the norm || ||, and there exists
a constant ¢, such that

[l ull. < ea(t + D™ [helln.

(¢) For any v € D,

t

» . . N .

2y = e g 4 4 f T H, 2 dr,
0
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where the commutator is defined as

1
[H,2"] = Z (—2ip;a’; + 27;4)-
i=1
In the L*norm, the integrand is continuous
in 7 and bounded by const (1 4 |7[)"'™" ||ul|..

Without further assumptions on the potential we
are not able to exclude the possibility that D, (for
|n| sufficiently large) contains only the vector O.
If V(x) is a C"-function in some open set O of R,
then any C”-function of compact support contained
in O belongs to D. = M,D,. In the cases usually
considered in physics, such as a system of particles
interacting via Coulomb forces, for example, it
is clear that D, is dense in L*(R"). If, in particular,
V(z) is a bounded C°-function on R' with bounded
derivatives (the bounds depending on the deriva-
tives), it follows that

D,= [\ D(EH%
k<n
m<inl—I1k|

and that the norm || ||, is equivalent to the norm

lulla = sup ||2"HTu]].
k<n

msInl= %l
D. is then simply $(R'), and since the system of

norms || ||, generates the usual topology on S(R'),
we obtain as a consequence of Theorem 1:

Theorem 2. If V(x) is a bounded C"-function on
R’ with bounded derivatives, then $(R') is invariant
under the unitary group e *** and the mapping
(u, ) = e~y of $(R') X R onto $(R') is continuous
[in the sense of the conventional topology on S$(R")]

4. PROOFS

Lemma 1. For any multi-index n we define four
linear subsets M} of L*(R’), i = 1 --- 4, and a
norm || ||; on each M; by

M, = {\ D(H,z"),

[lulla = sup (lz*ul] + ||Hoz"ul]),
M: = {\ D(z*) N D(z*H,),

[fulln = sup (lz*ul] + {l«"Houl]),
M; = () D(HzY,

k<n

full3 = sup (llz"ul| + | 1Hz"u],
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M. = Q‘ D" N D(z*H),
[fulls = sup (el + ||=*Haull).
Then:
(d) For fixed n, the 4 spaces M} coincide:
M, = M; 6

for all 4, j; and on this single space, which we
call M,, the four norms || ||; are equivalent:

IREE=AINIH (6)
for all 4, j.
(e) S(R') is dense in M, in the sense of any of the
norms || ||;.

®

On M,, the formal commutation rules hold be-
tween p; and any monomial z* with & < n.

Proof: For ¢, j = 1, 3, (5) follows from D(H) =
D(H,) and (6) from the equivalence of the norms
[|Hul| + ||u|| and ||[Hou|| + ||u|| on D(H). For the
same reason, (d) holds for n = 0. Hence it suffices to
prove (5) and (6) for ¢, j = 3, 4, assuming that
(d) holds for any multi-index < n (this also covers
the case ¢, § = 1, 2, which is obtained by setting
V = 0). We only show that

M: C M: and, forall u & M,
[[ulls < const ||u]lz,

@

since the proof of (7) with 3 and 4 interchanged is
completely analogous (and in fact not needed for
the demonstration of theorem 1). Let u € M4,
For any k < n, My C M3, so that by induction
hypothesis © & M} and

[lulli < const [[ulli < const [[ul..

It remains to prove that v € D(Hz") and that
[|Hz"u|| < const ||u|ls. For any v & $(R’) we have

(u, :c"Hv)b = (u, Hz')

+ X %t e + @ ). @

By induction hypothesis, u € M} and [|u]|; < const
llu|ls < const ||u||; for any & < n, in particular for
k= (- -,n; — 1, --n). Therefore u € D(p;z",;)
and

llpz%ull < |lo%ull + ||Hozlull < const [luf[,, (9)
go that we can write (8) in the form

(z"u, Hy) = (z"Hu, v)

+ 2 [—2ipalm, 0) + (@, v)].

i=1

(10)
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Since H is the closure of its restriction to S(R’), this
extends by continuity to all v € D(H). Therefore,
by (9) and because u & M3,

|"u, Hv)| < const |[ullx [lol]

for all v € D(H). Hence z"u € D(H) and ||Hz"ul| <
const ||u|ls, which is the desired result.

(e) is proved by showing that S(R') is dense in
M, in the norm || ||}. This is true for n = 0, 8o again
we proceed by induction, assuming (e) for all multi-
indices < n. Let v & M, and suppose that n, # 0.
Then (¢ + z)u €E Moy n' = (0 — 1, 0y + -+, My).
By induction hypothesis there is a sequence v;, v; €
S(RY, |lv; — (@ + zy)ulli — 0 as j = «. Defining
u; = (¢ + 2,) 'v; we find that u; € $(R"), u; — u,
and

(@ + z)u; — 26+ 1)y, 11)
Ho* G + z)u; — H2* (G + z)u, (12)

for all ¥ < 7/, the arrow indicating convergence in
the L®*-norm. Multiplying (11) by (¢ + z,)™" we
see that z*u; — z*u for all & < n’ and therefore also
for k = n, by (11). Suppose now that Hyz"u; is a
Cauchy sequence for all £ < #’. Since H, is closed,
this implies Hoz*u; — Hoz*u for all k < n’ and there-
fore also for k = n, by (12), or altogether ||u; —
ul|l — 0. It remains to prove that Hez"u; is a Cauchy
sequence for any k£ < n’. For w € $(R') one has
flwll < 116G + @)w|| and |lpw|| < {[Hw|| + |lw]l.
Using this, one easily verifies that

[|Hoz"w]] < 8 [IHot'(é + z)w]| + 4 |]2°C + z)wl|

for w & $(R'). Hence (11) and (12) imply that
Hr"u; is a Cauchy sequence.

The proof of (f) is now obvious: the formal com-
mutation rules between p; and any monomial z* hold
on 8(R’) and, for k < n, extend to M, by continuity.

Proof of Theorem 1. The theorem holds for n = 0.
For n > 0, we assume that it holds for all multi-
indices < n and prove it for n.

Let w € D,. Then, for any k¥ < n and m <
In| — |k|, H™w € D, and ||H"u|le < |u]l.. By in-
duction hypothesis, z*H"e™***u exists and is con-
tinuous in ¢ and bounded by const (1 + [¢])"'[|u]].."
The same follows from (c) for the remaining case
k, m = n, 0, hence it suffices to prove (c).

First we show that the integrand in (¢) is well
defined, continuous in 7 and bounded by const
(1 + |#)"™"*||ull.. By induction hypothesis, this

¢ Unless stated differently, the terms ‘“continuous” and
“bounded”, applied to L*valued functions, are understood
in the sense of the L?-norm.
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clearly holds for the contribution of the terms z*;;
in the commutator. Also by induction hypothesis,
in the terminology of Lemma 1,

u € M,

for all 7 if k¥ < n, and, in the sense of || ||}, e ¥ u is
continuous in 7 and bounded by const (1 + |7])"'|| .
In particular, this appliestok =2’ = (n, -+, n; —
1, -+ n;). By Lemma 1, we have for any v & M,,

-IHT

(13)

~{Hr

[|=%l]
-+ | |Hozo|| <

hence we conclude that p,2" ;67 “"u exists, is con-
tinuous in 7 and bounded by const (1 + |7])"™' 7| |u]|n.

It remains to be proved that the lhs (left-hand
side) of (¢) exists and is equal to the rhs. Let 4 be a
bounded operator on L*(R') mapping D(H) into
itself continuously, in the sense of the norm ||Hul|| +
||u|| on D(H). Then, for any u, v & D(H),

(d/d‘r)(v, eiHrAe—in’u,) = (U, ,I:eiHr[H, A]e—iﬂru).

llpiz”oll <
llol[+ < const [lo]fa,

—iH

Integration over 0 < 7 < ¢ yields

(v, T Ae”*"'u — Au)
- (v, i fo ¢TH, Ale™ df) . (14)

where we have used that the integrand in (14) is
continuous in 7, so that the integration can be car-
ried out inside the scalar product. Since D(H) is
dense in L*(R"), we conclude that for any u € D(H)
t
Ae—s‘HCu = e—inAu + 1; [ e—-’H(t—f) [H, A]e—iH’ru d‘r.
)
An example of such an operator 4 is the operator
of multiplication by a function 4 (z) of $(R"). Choos-
ing A(z) = z"¢7'**"", a real # 0, we obtain

n —lazl? —iHt —$Ht n —~laz|?

xre e u==e re u

+ zf -.H(t-r)[H »n -Iazl’]e—‘Hfu dr. (15)

To discuss the limit as & — 0, we apply the following
Lemma:

Lemma 2. Let t — u(f) be a continuous mapping

R — L*(R"). Then, for any multi-index n,
lim (ax ne-lazl'u(t) = {u(t) f n=0
e 0 if n>0

in the sense of the L’-norm, uniformly in finite
t-intervals.
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Proof: On L*(R"), let P, be the projection defined

by
Poauz) = {u(x) if || <r
0 if |z] >
1 — P,u(®)|| is continuous in ¢ and, for fixed ¢,
converges to 0 monotonically as r — «. By Dini’s

lemma, the convergence to 0 is therefore uniform
in finite ¢-intervals. The norm of the operator

(ax)"e”'**!” is independent of « and, for fixed r,
hm(axn—lazl'P ___{Pr if n=20
= 0 if n>0,

in the sense of the operator norm. The rest of the
proof is clear.

Now let v € D,. As we shall see below, the rhs
of (15) converges in the L*-norm to the rhs of (c)
for any ¢ as o — 0. Also, by Lemma 2,

—iHt -iHt

U —e Uu.

—laz|?

€ €

Since z" is closed we conclude that e™*"'u & D(z")
and that 2" *#*u is given by (c).

To complete the proof we show now that, as
a — 0, the integrand in (15) converges in norm to
the integrand in (¢), uniformly in 0 < r < t. By
(13) and (f) we can write the integrand in (¢) in
the form

1
—e~ TN S (24 pse
i1

each term in the sum being continuous in 7. On the
other hand, the integrand in (15) is, explicitly,

1
_e—iH(t-r) Z ([1 _ 7%(axi)z:le—la:l‘2ixv:’_pie—s‘liru

i=1

—~4Hr, )
H

Ty 4 e (16)

4n,-+2

+ [1 nin; — 1)( az;)’
-+ ';Lf?].—) (axi)4]e—lazl’x?ﬁe—o’lfru). (17)

By Lemma 2, (17) converges in norm to (16) as
a — 0, uniformlyin 0 < r < ¢

5. CONCLUDING REMARKS

In classical mechanics, the velocity of a particle
can be estimated in terms of the total energy if
V(x) is bounded from below. This suggests the
following question: let V(z) be such that D(V) N
D(H,) is dense in L*(R') and that H, + V is bounded
from below, and let H be the Friedrichs extension of
H, + V. Does Theorem 1 still hold in this case?

If V(z) is the potential of an N-particle system
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(! = 3N) which is not affected by external forces,
then V(z) is invariant under simultaneous transla-
tions and rotations of the N particles, and there
is a unmitary/antiunitary representation (up to a
factor) U(G) of the Galilei group (including time
inversion). For any integer p > 0, let D, = M4 <, D,
and let 2. <,l| ||» be the norm on D,. Then U(G)
is a bounded operator mapping D, onto itself and
depending continuously on the Galilei transforma-
tion @, in the strong sense on D,.

A fina] remark applies to Ref. 1: Suppose that the
N particles interact via two-body forces of short
range, in the sense that [ d’z |z|* |[V(2)[* < « for
all n > 0 and any of the two-body potentials V(z).
Using Theorem 1 we can show that

W. HUNZIKER

T(—~a, +++ —a)e ¥'T(a, -+ an),

applied to a certain class of states, converges to the
cluster limit faster than any inverse power of a.
However, we have not been able to obtain a similar
result for the wave operators Qf. The difficulty is
the following: we do not know sufficient conditions
on the channel state f, such that Qif, € Do—
except for the very special case where Theorem 2
applies.
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The partition function for the Ising model on a two-dimensional rectangular lattice is cast into a
form which closely resembles the vacuum expectation value of the S-matrix in quantum field theory.
The standard Onsager expression is obtained very simply in this formalism. It is further shown how
the nonsoluble models can be expressed as field theories with quartic interactions, thereby resembling

the standard many-body fermion theories.

1. INTRODUCTION

LTHOUGH the Pfaffian method' hitherto used

for solving many examples of the Ising model

was originally expressed in an operator formalism,
which implied some connection with quantum field
theory, the analogy was rather slight, and the method
of solution depended little on the vast armory of
methods of field theory. This was unfortunate
because the sophisticated techniques developed for
handling the deep problems of elementary particles
have proved very powerful in other contexts such
as many-body theory and statistical mechanics.”
In particular the development of approximation
methods for handling the unsolved problems would
be accelerated if such techniques were available.
This paper is concerned with two questions. The
first is to show how the solution of the Ising model
can be reduced to the problem of calculating the
vacuum expectation value of an expression which
can be regarded as a ‘‘time’-ordered product
of exponentials and which closely resembles the
standard expressions employed in the functional
equation approach to field theory®. For the soluble
models the exponent is a quadratic expression in
fermion-type field operators, and for this case the
problem of evaluation is almost trivial. For the
well-known unsolved problems, such as the rec-
tangular next-nearest-neighbor problem and the
cubic lattice, it is shown how the exponent has an
additional quartic term. Such an expression is of
the same type as that encountered in the treatment
of many-fermion problems such as in the electron
gas, the nuclear model, and in superconductivity.
The second question is the one already referred to,

1 H. 8. Green and C. A, Hurst, Order-Disorder Phenomena
(Interscience Publishers, Inc., New York, 1964). This book
will be referred to as G.

2 D, Pines, The Many Body Problem (W. A. Benjamin,
Inc., New York, 1962).

3 Quantum field theory methods have been applied by
other authors to the Ising model, but their approaches are
quite different from that adopted here. For example, F. H.
Stillinger, Jr., Phys. Rev. 135, A1646 (1964). :

namely the derivation of the Onsager expression
for the partition function for the rectangular lattice
with nearest-neighbor interactions. The calcu-
lation of partition functions for other soluble lattices,
such as the triangular lattice, presents no further
difficulties.

The first question is discussed in Sec. 2 and the
second question in Sec. 3 of this paper.

2. TRANSFORMATION OF THE PARTITION
FUNCTION

The starting point is an abstract algebraic defi-
nition of a Pfaffian.* An algebra E, generated by
forming all possible sums and products, with nu-

merical coefficients, from a set of elements z,, « - , 2,
is called an exterior algebra if the relation
Ti%; + T;xy = 0 (1)

holds between all pairs of generators. In particular
we note the relation

2 =0. Q)

Both the relations (1) and (2) hold not only for
the generators themselves but also for all elements
of the linear space spanned by these generators.

Because of these defining relations the algebra B
will have dimensions 2". The linear subspace E,,
spanned by all products z;, - z;, of degree m is
called homogeneous of degree m, and every element
z & E can be uniquely written as a sum

z= 2, 2, with 2, E E,.. 3

z, is called the homogeneous m-component of z.
In particular if m = 2, we have a subspace E, all
of whose elements commute with each other. In
this case the exponential addition law is valid,
namely

(exp a)(exp b) = exp (a + b) CY)

4 C. Chevally, The Construction and Study of Certain
Important Algebras (The Mathematical Society of Japan,
Tokyo, 1955).
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for a, b € E, (more generally if a, b € E,, for m
even}. Now suppose

= E LT

i<f

®

is an arbitrary element contained in E, and n = 2p
is even. Then the homogeneous 2p-component of

exp T is a multiple of z, - - - z,,

(exp D)y = Pr(my ++* 23y) ()]

and Py, a number, ts called the Pfoffian of T € E,.
As an example consider the case p = 2, and write

T = o312 + ouati®s + a0y
+ QpsTa®s + CaulaTs T ApeTsly.
Then, from Egs. (1) and (2) we find
It = (@121 + aiZs + %1%
+ ez -+ 24Ty + aaﬂah)g
= 2(o1a0tss — Q1302+ 014000) T\ Ta LT
and
P I = OQqa03¢ — Oygligy Ol34003, (7)

which is the usual definition. Incidentally it is
simple to prove from the definition (4) that P2 = D,
where D is the antisymmetric determinant formed
from the coeflicients a;; of T'. Conversely, if A € E,
for p = 2, is an arbitrary element of even order,
with

A = ap + naZis + ot + 0Ty +F apsTats
t 024%2%4 T AaaTaTs b g4 Loy,

CUo#O,

®8)

then the necessary and sufficient condition for
A = exp T for some T is that

(9)
which is just the consistency condition for factorizability
introduced earlier® to justify the application of
the Pfaffian method to the solution of the Ising
problem for the rectangular lattice. For p > 2,
additional relations must be satisfied if the repre-
sentation A = exp T is to be possible, and the
whole set of such relations are identical with the
congistency conditions derived in €' for the more
general case. So the condition for solubility of an
Ising model by the Pfaffian (and hence by the
Onsager method) appears to be equivalent to the
condition that an even element of an exterior

t ‘C A Hurst, J. Math. Phys. 5, 90 (1964), to be referred
as C

Cplligse = Olallag — Chigllas -+ Qy4liog,

C. A. HURST

algebra be expressible as an exponential. We notice
that if the condition (8) is not satisfied, then we
must write instead

A = g, exp (‘Z; & T%; F PrasaTiTaTaTs) (10
>

with
al; = a;y/ay and agﬂmaa
= OgClings — (Oia0as — Qyalas =+ O140izs).
In order to show the connection with the Ising
model, consider first of all the case of the rectangular

two-dimensional lattice. The problem is to evaluate
the expression

N
(2) _ 1) i w
Z, = (Q: H (I + a;=ntmr + 2a; " a0

ERd ]

@t Mt () m? )
+ ya;” a;-y + 20 0=, + Ya; Gi-m
(2)1 (1)? (2)* (1)T @
+ zya; + zya; Qjoomini) 9), (11

where a{”, a{" are a set of 2N fermion annihilation
and creation operators satisfying the anticommu-
tation relations
3t
a(i 3y ]

() (30 . —
{ai ’ a: ] - i’ - 0’
+ nt t
[a(s)’ a(: ) ]+ = a’gt) (t + a(& 3 &(t) = 5,;!8;5’

The indices (1) and (2) refer to horizontal and
vertical bonds respectively. The product in equation
(11) is to be read from right to left in order of
increasing j and the special considerations required
to account for edge conditions are neglected. Q is
the vacuum state defined by the simultanecus
equations

Lo}, 12)

(2)9 — 0

For a particular j the four operators a;
a®, and o} generate an exterior algebra of dl-
mensions 2%, and the condition for the bracket
expression in Z,; to be written as an exponential

is satisfied. Hence Z, can be written as
) (1) nt_ @
zZ, = (g, H exp [a;5na;2 + 2a;” a;0

@t ) mt (@ @t ()
+ ya;¥ a;5 + za; a;5, + ya; ai-m

a’Q = af (13)

¥ t
(2) s a(l)

all §.

+ 2yaPa']9). (14)
We now define the following operators
AV = o, AVG =20, 0
ADG) = a®, AP0 = ya",

and then the expression in square brackets in Eq.
(14) can be written as
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4 4
3 2 2 kA P(ACG), (16)
where the matrix (%,,) is given by
0 -1 -1 -1
1 0 -1 -1
= (ko) =

1 1 0 -1

1 1 1 0
= (—’kcv) = —K' (17)

In terms of this notation Eq. (14) can now be
written in the very suggestive form

Zy = (2, Tlexp § 22 20 20 ke AP(DAC(D]D),
(18)

where T denotes an ordering operator which requires
the terms obtained on expanding the exponential
to be written from right to left in order of increasing
j. Such an operator is the discrete analog of an
operator very well known in quantum field theory—
the Dyson chronological operator.® In this formalism
Z, is the analog of the vacuum expectation value of
the S-matrix with an interaction Lagrangian (or
Hamiltonian) which is a quadratic function of the
field operators. Such a theory is known as a pair
field theory and was first introduced by Wentzel,’
who obtained exact solutions by diagonalization.
In this context therefore, it is not at all surprising
that the rectangular lattice can be solved exactly.
Also, from the remarks made earlier about con-
sistency conditions and exponential representation
it is clear that all soluble models lead to an expression
for Z, which contains an exponent which is quadratic
in fermion operators, and so all are types of pair
field theories.

The way in which the unsolved models, con-
taining crossed bonds, are represented can best be
explained by considering the two-dimensional next-
nearest-neighbor problem. An abortive attempt to
solve this problem was described in Chap. 7 of G.
At each point of intersection of the diagonal bonds
a new lattice point was introduced, to which a
cross-over condition is applied thereby permitting
bonds only to go straight through and not to turn
through 90°. The corresponding new factor in the
operator product in Z; is given by

¢ N. N. Bogoliubov and D. V. Shirokov, Inireduction to
the Theory of Quantized Fields (Interscience Publishers, Ine.,
New York, 1959).

7 G. Wentzel, Helv. Phys. Acta 15, 111 (1942).
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t t
A= (1 + ua(s) (3) + a(4) ai(::

(4)f (3)t (4) (3)
+ wa;’ ;185 ),

(19)

where a®, a®t are operators annihilating and
creating bonds in the diagonal j to 7 + m + 1
and u is the corresponding weight and a, a*, v
are the corresponding quantities for the dlagonal
j + 1 to j + m. The index j' refers to the new
lattice point inserted at the intersection of the
diagonals. Comparing Eq. (19) with Eq. (8) we
see that

ay = l,alz = Qg = Ogg = Qg = 0:
Q13 = U, Ogg = U, 01234 = WD

and hence

A = exp (ua(s)'f (3) + va(f)fa,(ﬁ

ot (@t (6 (3
+ 2wal? 'aiP aPiaiP).

(20)

So the next-nearest-neighbor problem is analogous
to a quantum field theory (or a many-fermion
problem) with a quartic interaction. The same
argument may be applied to any lattice with crossed
bonds, so that their solution will depend on the
development of a successful method for handling
such problems. These sorts of problems are well
known in many-body theory, and the question is
now what sort of approximate methods would be
the most suitable. It is not claimed that all problems
with crossed bonds are now equivalent, for it could
well be that the cubic lattice, for example, has a
far more singular “interaction’’ than the next-
nearest-neighbor problem,

Also arising from the representation (18) is the
question of the meaning of the Green’s functions
which may be obtained by considering vacuum
expectation values of products of operators 4.
For example we can define a function

GO, i) = (@, Tlexp % 20 20 22 kA ™(9)

X AC@G), AT, AV G,

the two-point Green’s function. Such a function
will have some connection with correlations, al-
though, because of the anticommutation properties
of the operators A", A, the connection is certainly
not as direct as might be expected. Similarly a
function @, could be defined which will be relevant to
the discussion of susceptibilities. All these questions
are still under investigation. In order to demon-
strate not only the greater perspicuity that Eq. (18)
affords but also-the much greater simplicity of

@n
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calculation, the next section will be devoted to
its evaluation.

3. THE EVALUATION OF THE PARTITION
FUNCTION

In order to evaluate Z, the exponential can be
expanded out and the operator products in the
resulting infinite series arranged in normal order
according to Wick’s theorem.' In the process of
reordering, there appear time-ordered contractions
of pairs of operators 4 A‘“" which are defined
as follows:

TAP @, ACG)

= N(AP@, APG) + AP0 4G,
where
T(AP(), A7)
=0 — NATHACG) — 6G — DACTIADW,

6j) =1 for =0
=0 for j<O0.

The normal product N{(---) is defined as the
product of the operator arguments written with
annihilation operators to the right, creation operators
to the left, together with a negative sign if there

is a reordering of fermion operators involving an
odd permutation. So, for example, we have

T(AV (@, ADG)
= 20 — o ef’ — 20" — Paf®'a’
= —za'a} + 200 — 7)8;r.ia
and therefore
AVGAPG) = 28imn e (23)

If A(j, §) denotes the matrix of time-ordered
contractions, we find that

(22)

-

0 0 81,4 0
.o 0 0 it
4G, ) = 0 Vi
—m6i+1,,~ 0 0 0
0 -—y6,~+,,.,,w 0 0
=-—A47G, ). (29

With these preliminaries we can now consider the
evaluation of Z,. The idea will be to represent this
as a linked cluster expansion. We can write the
expression arising from the expansion of the expo-
nential in Z, as

E Z(n)

n=0

(25)

C. A. HURST

where

fn) = (2”73'!)—1(9*7 T[(Z: Zv Ee kwA(”) G
X ACE,  (26)

and an application of Wick’s theorem enables this
to be written as

Z(n) (2n ' -1

2 XX

contractions Ji

X2 220 X (=D ke, oo

Pndn
Pa L4

X A"”(J) A®(y @n

where the symbol thmgm means that the sum
is taken over all possible pairs of contractions of
the operators. No terms containing normal products
survive because of the conditions on the vacuum
state given by Eq. (13) and its Hermitian conjugate.
The factor {(—1)7 is the sign factor depending on
the parity of the permutation of the fermion oper-
ators required to bring paired operators together.
The factor 27" in (27) can be removed because for
every j there are two operators A (j) and 4“(j)
available to form contractions. In detail we have,
corresponding to every contribution

e APG) A () ACG) AP G,
a further contribution
—-%kWA(“)(j)'A(”')(j’)'A(”)(j)"A(””)(j”)"
— ___%kWA(p)(j).A(q')@;).A(a)(.?—).*A(p")(jn)..
%kqu(P)(j).A(a')(j,)-A(a)(j)..A(p”)(jIl)..’

where the minus sign in the first line arises from
the interchange of order of the operators 4 (j)
and A'“(j), and the compensating minus sign in
the third line from the antisymmetry of the matrix
K. Adding these terms compensates for the factor
1 and this can be done for every j.

The expression Z{™ can be given an interpretation
in terms of Feynman graphs in the usual way.
The labels §;, --- , j. are represented as n vertices
of a graph and a contraction A(j)"A(j")" by a line
joining the vertices labeled j and 7. Following the
remarks of the previous paragraph we can assign
a direction to these lines such that the operator
AP (j) is associated with an oufgoing line and the
operator 4'“(j) with an ingoing line. As there are
only two operators for each j there will be only
two lines incident on each vertex and the sense of
the arrow specifying the direction of these two lines
will be continuous through a vertex. This means
that each product of pairs of contractions in Z™
will be represented by a graph which consists of
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a set of nonoverlapping closed loops, and the sum
Z,o,,m.,m,,. will be represented by the set of all
graphs which contain loops of all sizes and numbers
restricted only by the condition that the total
number of vertices in each graph is n. The permu-
tation P referred to in Eq. (27) can be effected in
two steps. The first step is to rearrange the order
so that all operators appearing in a single loop
are brought together, taking care not to alter the
relative order of operators within a single loop.
This permutation must be an even permutation
because each vertex will contribute two operators
t0 a loop. The next step is to rearrange the operators
in a loop so as to put them in the order corresponding
to the associated graph. In order to see the effect
of this second rearrangement, which effects all the
loops independently of each other, consider a loop
with ! operators. This will contribute a factor

iZ"' ; E e Z Z Tt kaez o i

P k43 a1 at

X A(m)(jl)A(cx)(]-l) R A(m)(jz))A(a”(jz),
for which a possible contraction will be with the
indices in the order written:

?: o ’Zz Z "t Z E T Ekvmx e ke

P1 Pl a1 ai
x A(m)(jl).A(m)(jz). e A(m)(]-l)..A(at)(jl)...
This can be written in matrix notation as
2 e D Tr(KAG iKAG §i) -+ KA Gy, §)
¥t

= =2 X Tr (KAG, KA, j)

X o KAG, 30), (28)

A reordering of the indices 7, - -~ , 7; in Eq. (28)
will not change the sign of this expression because
such a reordering will entail the shifting of a pair
of operators at a time. Hence there will be (I — 1)!
equal contributions to the term (28). The factor
{1 — 1)! arises because all ¢yclic permutations are
counted only once, as the loop can be regarded as
starting from any vertex. The factor § is included
because a permutation which differs from another
permutation by deseribing the same set of vertices
in the opposite order ean be produced by inter-
changing A and A‘Y at every vertex and such
an interchange has already been allowed for.

If we denote the expression (28) by —L‘” the
expression (27) can be written as

f”) = ('n!)_l Z C(Vl} Py ** ')

Y142yt e=n

X(‘ g ) \—=) "

(29)
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where C(v,, v,
is given by

!
Cly. v, -+ = ( n: )
o) =\ @y ol

X (nlwal - )(@Y@B)™ -+). (30)

The first factor counts the number of ways of
assigning the n vertices to the set of », loops with
a single point, », loops with two points and so on.
The second factor counts the number of ways of
permuting the points belonging to loops of the
same size among themselves, while the third factor
counts permutations of points within a loop as
already described. Collecting (25), (29), and (30)
together, Z,, can be written as

Z, = exp (—3L), @BD

where L = Do, L', and L‘” is given by Eq. (28).

By analogy with the methods used for evaluation
associated with Feynman graphs, we make a Fourier
transformation, using the identity

§oir = _I_N_Z‘twru—m
TN

r=0

-++) is a combinatorial factor, which

1 N1 ]
_ 1 —rlimi")
=N Z"’ ’

r=g

with w = exp (2#i/N). Then A(j, /) can be written

.. 1% L6
AG, i) =3 o'

(32)

r=0
0 0 zw " 0
|0 0 0 gy
— " 0 0 0
0 —yg™ 0 0 )
1&E 6-in
=¥ gw Alr, w).
Then L becomes
N-1 Ny
G S S Sl SIS
i f1 ri=0 im0

X wfx(fx-ia)+7s(fz—is)+"'+ﬂ(fl—ix)

X Tr [KA(TI) W)KA(Tz) “’) ot KA("'I; w)]

N-1 N-1
- Z Z Braradrars **°

ry1=0 ri=0

X Tr (KA(ry, @) -+ KA(r, )

8"2"&

=N Nf, Tr [(KAGr, 0))']. (34)
Hence
N"'log Z; = %Af Trlog [I — KA(r, &),  (35)
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where I is the unit 4 X 4 matrix. Now for any
matrix D with determinant |D|,

Tr log D = log |D|,

and, using |K| = 1, we have
N-1

C. A. HURST

method is that it replaces the problem of summing
over all closed polygons drawn on a lattice with
the possible replications and overlappings that this
entails by the much simpler problem of summing
over single closed polygons without any special
topological structure.

N7 log 2, = % ,Z_; log [K™" — A]  (36) The results for the triangular lattice can be
where written down immediately if we put
K'— 4 0 —1 —~1 -1 -1 —1]
0 1 —1l—aw™" 1 1 0o -1 -1 -1 -1
_| -1 0 1 —1—yu™ . (3D K = 1 1 0 -1 -1 =1} (38)
1420 —1 0 1 1 1 0 -1 -1
—1 14yo™ -1 0 1 1 1 1 0 -1
which is the usual result. The advantage of this Ll 1 1 1 1 0)
0 0 0 Z08;-1,i 0 0
0 0 0 0 YOiom.i’ 0
AG, 1) = 0 0 0 0 0 28 mi1.i’
—28,41.40 0 0 0 0 0
0 —Ydjem.it 0 0 0 0
[ 0 0 —28;4m-1.i’ 0 0 0o )

Summarizing, the rules for evaluating the partition
function for any soluble Ising lattice are:

(1) Transform the operator polynomial for a
Iattice point into an exponential, and calculate the
matrix K from the structure of the exponent.

(2) Calculate the matrices A(j, j/) and A(r, w).

(3) Draw all possible closed loops with an arbi-
trary number of vertices, and connected with
directed lines so that the sense of the arrow is
preserved through a vertex and only two lines
are incident on a vertex.

(4) With each vertex associate on index j and a
matrix K, and with each directed line leading from
7 to j associate a matrix A (4, 7).

(5) Form the matrix product in the order of the
directed lines, take the trace of this product, and
sum over all j from 1 to N. Finally sum over all
contributions from all possible loops.

(6) Instead of labels j attached to vertices, a
label » may be attached to lines and the label r
must be the same along a line, ie., “conserved”
at each vertex. The label r is analogous to the
momentum in field theory.

(7) Green’s functions are obtained by allowing
vertices to have only a single line terminating on

them. If there are two such vertices, the graphs
correspond to the two-point function, four vertices
give the four-point function, and so on.

There is no need to assume that all vertices are
of the same type, and so one may consider problems
in which there are several sorts of vertices corre-
sponding to lattices with different connections at
different lattice points. Also one may allow for
several bonds joining pairs of lattice points, so long
as they run in parallel.

When crossed bonds are present, the additional
quartic term in the exponent will lead to loops
which are no longer simple but have self crossings.
Each such self-crossing would be marked by a
vertex point, and there will then appear many
more topologically distinct such loops. It would be
interesting to see whether these graphs can be
classified and whether at least partial summations
can be made, in order to form an initial approxi-
mation.
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It is shown that the simple matrix-inversion techniques often used in numerically solving linear
integral equations with a Fredholm—Schmidt (i.e., square-integrable) kernel can also be employed
for a wide class of non-Fredholm (“singular’’) equations. This class includes equations the kernel of
which is the sum of a Fredholm~Schmidt kernel and a kernel whose norm (in the operator sense) is
less than one. In particular, the integral equations of the so-called “new strip approximation” in

particle dynamics belong to this class.

L INTRODUCTION

HE use of electronic computers has made pos-

sible the rapid and accurate numerical solution
of linear integral equations of the Fredholm type.
For the purposes of numerical solution, a given
integral equation of the standard form

o) = o) + [ @K e O

is usually replaced by a system of linear algebraic
equations involving as unknown quantities the values
of ¢(z) at a finite number of values of z (“mesh”
points). This is accomplished by approximating the
integral by a “weighted” sum according fo some
rule of numerical integration. The linear system is
then solved by the ordinary algebraic method which
amounts essentially to the inversion of a finite-
dimensional numerical matrix. The matrix inversion
is carried out efficiently by electronic computers.
The resulting approximate values of ¢(x) at the
“mesh” points can then be interpolated to produce
an approximation to ¢(z). The convergence of this
procedure as the number of mesh points increases
is easily established if ¢(z) and K(z, z/) satisfly
{(besides certain continuity properties) the conditions

[ ol <, @

L b f "tz d’ Kz, ) < . ®)

In the language of functional analysis,® condition
(2) means that ¢(z) belongs to the Hilbert space
of L*(a, b) functions and condition (3) means that
K(z, 2') is the kernel of a Schmidt operator on
L*(a, b). An enormous literature exists on these

* Work supported by the U. 8. Air Force Office of Scien-
tific Research and Development Command.

1 R. Riesz and B. Nagy, Punctional Analysis {Frederick
Ungar Publishing Company, New York, 1955).

Fredholm or Schmidt equations.? Quite often, how-
ever, in physical problems one encounters integral
equations whose kernel K (z, z') is not of the Schmidt
type, although it represents a bounded® operator on
L’(a, b). To this category belong certain types of
“singular’”’ integral equations such as integral equa~-
tions of the Wiener~Hopf* type. We mention here
an example which, in fact, motivated the present
work. In the framework of the S-matrix approach
to particle dynamics one encounters the following

equation®™'%;
N(z) = B(x)
L33 N ! . ¥
+1 [ B =50 ["’ S 4] NG), @

where B(z) is a continuous smooth function having
a logarithmic singularity at z = =z, [i.e. B(z) ~
log (z, — z) near x = z,]. This equation embodies
the so-called “New Strip Approximation,”® the solu-
tions to which are used to compute Regge trajectories
in the relativistic scattering problem.

Due to the singularity of B(z) at z,, Eq. (4) is
not of the Schmidt type and special methods have

* A concise account of the theory may be found, for ex-
ample, in F, G. Tricomi, Integral Eguations (Interscience
Publishers, New York, London, 1957). See also F. Smithies,
Iniegral Equations {Cambridge University Press, Cambridge,
England, 1958).

$ A bounded operator K is an operator of finite norm. The
norm of K is defined as the sup |K¢| for {¢| = 1. A practical
method for obtaining upper bounds on the norm of integral
?pggggors is given in G, Tiktopoulos, J. Math. Phys, 6, 573

1 .

4 See B. Noble, The Wiener-Hopf Technigue (Pergamon
Press, New York, 1958),

5 . F. Chew, Phys. Rev. 129, 2363 (1963).

8 G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).

7 C. E. Jones, Phys. Rev. 135, B214 (1964).

8V, L. Teplitz, Phys. Rev. 137, B136 (1965).

( 996505 F. Chew and V., L. Teplitz, Phys. Rev. 137, B139
1 .
( gg l)) C. Teplitz and V. L. Teplitz, Phys. Rev. 137, B142
1965).

1 (. F. Chew, Phys. Rev. 130, 1264 (1963). )

2, E. Jones, “N/D Equations with a Finite Strip,”
(to be published).
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been used for its numerical solution. Chew'' ob-
served that the kernel of Eq. (4) can be written as
the sum of a kernel W(z, z’) of the Wiener-Hopf
type and a Schmidt kernel C(z, z’). He then showed
that Eq. (4) can be solved by first obtaining the
resolvent R(z, z') of W(z, z') by the Weiner-Hopf
technique and then reducing Eq. (4) to a Fredholm
problem with kernel [ dz"R(z, 2’")C(z”, «') and
inhomogeneous term [ d2’'R(z, z')¢(z’). A numerical
solution is possible in this way. However, the labor
and computer time involved is considerable.®*°

In this paper we show that a wide class of non-
Fredholm integral equations [to which (4) belongs]
can be solved numerically by simple matrix inver-
sion. The actual numerical procedure does not differ
from that used for the ordinary Fredholm equations
except for some care needed in assigning values to
the kernel at mesh points where it is discontinuous
or singular.

Our class of equations can be briefly (but not
completely) described by saying that ¢(x) is in
L*(a, b) and that

K(z,2") = Wz, 2') + C(z, 2'),

where the norm® of W(z, z’) as an operator on
L*(a, b) is less than one and C(z, z') is a Schmidt
kernel.”> The relevant theorems are stated and
proved in Sec. II. A discussion of the numerical
procedures and examples are given in See. IT1.

All integrals occurring in our discussion are under-
stood in the Lebesgue sense. Also only (bounded)
tntegral operators are considered. These are defined
by a function K(z, z’) on (a, b) X (a, b) (called the
“kernel”’) such that for every f(z) in L*(a, b) the
integral [2 K(z, 2')f(z') dz’ exists almost everywhere
and defines a function in L*(a, b).

II. THE THEOREMS

Theorem 1. The integral equation

W) = o) + [ WK W) @

is given where ¢(z) is in L*(a, b), i.e.,

b
f @) dz = ||’ < .

The integral operator K is defined on L’(a, b) by
the kernel K(z, ') and its resolvent (1 — K)™*

.11t should be made clear that the numerical procedure
will approximate the solution of Eq. (1) which is unique in
L*(a, b). In general, equations of our class may have additional
solutions outside the L%(a, b) space. This happens frequently,
%)rfmf%asnce, in Wiener-Hopf problems. (See, in this regard,

ef. 12,

G. TIKTOPOULOS

exists. Consider a sequence of approximations ¢,
and K, (n = 1,2, --+) to ¢ and K such that
@)

lim ¢,(x) = ¢(z) a.e.,

lim K, (z, ") = K(z, z') a.e.,
where a.e. means almost everywhere;
(i) forn > n,, |(I — K.)7'| < a;

(iii) for n > no, |ea(x)] < #(x), where & is in L’
[K.(z, 2)} < K(z, '), where
K(z, 2') is the kernel of a

bounded operator in L.

Then the solution ¢ = (1 — K) ‘¢ of (1) is approx-
imated in the mean:

lim [¢ — (I — K)7%.] = 0.

no®

Proof: We have
I — K) — (I — K.)7 el
= | - K.)7'(K — K)I — K)7¢
+ (I — K)o — oa)l
<10 - K)7 K = KA~ K)7e| + le — eal}
<a|K —K)1—E)7| +ale— e

and

b
lim |p — ¢,| = lim {f le(x) — ea(@)|* dx} =0 (N
because (i) and (iii) ensure the validity of Lebesgue’s
“dominated convergence” theorem.'*

The existence of (1 — K)™' implies that v =
(1 — K)o exists as a square-integrable function.
Because of (i) and (iii), we can apply twice the
Lebesgue theorem to show that

lim f ' K. (z, z"w(x) dz’ = f ' K(z, z")v(z') d’

n—ro

and that

lim f " f " Ko, o) — Kz, o))

14 Lebesgue's ‘“dominated convergence’” theorem, one of
the most important results of the integral calculus, can be
stated as follows: “Let fi(z), f2(z), - - - be a sequence of func-
tions which are (Lebesgue) integrable over some measurable
set E of the real line. If lim,. fa{z) = f(z) almost every-
where in E, and |f.(z)] < g(z), where g(z) is a fixed (ie,
independent of n) function integrable over E, then f(z) is
integrable over E and

lim fE Il@) dz = fE f(z) da.

See, for example, M. E. Munroe, Measure and Integration
(Addison-Wesley Publishing Company, Inc., Cambridge,
Magsachusetts, 1953).

2
= 0.
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This means that
lim [(K — K)I — K)7| =0,

and from (6), (7), and (8) we deduce [(I — K) "¢ —
I~ K) e —0 Q.E.D.

In practice, condition (i) is the most difficult
to verify. If K is a Schmidt operator, namely if
[ dzdx’ |K(z, 2')]* < «, then (i) and (iii) imply
|[K — K, — 0 (assuming K is also a Schmidt
operator) so that condition (ii) is satisfied auto-
matically because

I — K]

I — K7 [K — K.
provided [K — K,| < |(I — K)™!|™".

Another case in which condition (ii) can be
-established rather easily is when K(z, z’) > 0 and
represents an operator of norm [K| less than one.
We ecan then simply consider approximations in
which

|K,,(:v, x,)| < [(a' - 1)/a]K(:c, xl)/lKls

-where a is a fixed positive number greater than one.

- K < 7=

The most important case, however, for applica-
tions is K = W + C where [W| < 1and Cis a
:Schmidt kernel. In this case, condition (ii} can be
replaced by more manageable ones and the theorem
-can be reformulated as follows.

Theorem 2. The integral equation

W) = o) + [ K, 2)90@)

is given where o(z) isin L*(a, b), i.e., [2dx |p(z)|’ < »
and the resolvent (1 — K)™' of the integral operator
K exists. Let K = W + C where [W| < 1 and C
is a Schmidt operator (i.e., [ |C(z, 2')|> dzdz’ < «).
Consider a sequence of approximations ¢, W,
and C, (n = 1,2 -..) to ¢, W, and C such that
() lim ¢,(z) = (%)

n—o

im Wz, 2) = Wz, z") a.e.,

n-0

lim Cuz, ') = C(z,2), a.e.;

a.e.,

(i) lea@)| < l3(x)]
where f @ do < o,
|Cuz, 2] < |Clz, 27|

b ]
where f f dz dz’ |Clz, 2)* < =,
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[W.(x, )] < |W(z, 2)| where W(z, z') is the
kernel of a bounded operator, and

Wi <1 —¢ where ¢ is a fixed posi-

tive number,

Then the solution ¢ = (1 — K)™’¢ of the integral
equation is approximated in the mean:

lim [y — (I — K)ea| = 0.

n—@

Note: Conditions (ii) for W, can be ensured if,
for example, W(z, ') > 0 and

[Walz, 2') < 1 — Wz, 2')/|W|.
Proof. Since |W| < 1, we may write
y=U—-Q0-=m7CI"10 - W) 7.
We note that

lim A=W —(1—W) | =0

because W, ¢ and their approximations satisfy the
conditions of Theorem 1. Thus we only have to
show that
I —w)y'C — (I — W,)'C.| —0.
We write
[ — W)7'C — (I — W,)Cl
= | - W)W — W)I — W)'C
+ I - W)H(C — C)
< A/ |(W — WT — WY 'Cl + (1/¢) [C — C.l.

Now under the assumed properties for ¢ and C,
the Lebesgue ‘“dominated convergence” theorem'*
implies that |C — C,] — 0. In order to treat the
|{(W — W, )(1 — W)™'C| term we introduce

Bia,2) = [ a4V, ) — Wiz, 14, 2),

where A(y, 2') is the kernel of (1 — W)™'C. Since
[W(z, y) — Wa(, y)| is bounded by [W(z, y)| +
|W(z, y)|, the Lebesgue theorem™ can be used to
show first that B,(z, ') — 0, a.e., and then that
I3 dzdx’ |B.(z, 2')]* — 0. Here we have used the
fact that B, is a Schmidt operator because it is
the product of a bounded operator and a Schmidt
operator. From (1 — W,) ¢, = (1 — W) 'p and
1 - W) 'C,— (1 — W)7'C it easily follows that

[I - (1 - Wﬁ)—l n]—l(l - Wu)—lian
= —=Q1-WTCI(1 — We

or (I - K,) '¢, — ¢ in the mean.
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III. NUMERICAL APPROXIMATIONS

In numerical applications, one replaces the given
equation

b
¥a) = o@) + [ K@, o))
by a system of linear equations

J(z-') = o(z.)
+ 'Z CiK(z:, ) ¥(z;);

where the values of ¢ and K at only a finite number
of “mesh” points are used. The “weighted”’ sum
has replaced the integral according to some con-
venient rule of numerical integration, e.g., Simpson’s
rule. This presupposes that ¢(x) and K(z, 2’) have
certain continuity properties as functions of x and
z'. They may be continuous with a finite number
of discontinuities: for example ¢(z) = log z is dis-
continuous at z = 0; log (z'/z) (' — z)* is dis-
continuous if either # or 2’ = 0. If one or more
of the points z; of subdivision of the basic interval
(a, b) happens to lie at points of discontinuity
of ¢ or K, then ¢(z;) or K(z,, ;) can be assigned
an arbitrary value (e.g., zero) at these points.

In order to apply our results the sums must first
be interpreted as integrals over appropriately de-
fined “step” functions. For concreteness, let us
consider a specific simple recipe for numerical in-
tegration: To evaluate [° g(x) dz divide the interval
into n equal parts by the division points

i7j=0: 1,2, .-+ ,n,

b—a
a’ a+ n ?

a+(n—1)b—n7—“, b.

An approximation to the integral is then provided

by the sum
a IN\b—a
oo+ (m—3)452)

>
m=1 n
The use of this rule for numerical integration in
our integral equation amounts to considering the
following “‘approximate” integral equation

LE) = @) + [ dEie, ),

where ¢,(z) and K,(z, 2’) are step functions defined

as follows:
enlz) = sa[x <o+ %(b - a)]

_'(b - a),

C. E. JONES AND G. TIKTOPOULOS

K.(z, ')

=K[a+m;%(b—a),a+~—“’n_ (b—a):l,
2 -a

and a + 2 (b—a)<x <a+—(b—a)

Such step functions are capable of approximating
¢(z) and K(x, x') even if these latter have a finite
number of discontinuities (where they may become
infinite). As n — o we have ¢,(r) — ¢(z) and
K,.(z, ') — K(z, «') except at these points where
¢(z) and K(x, z’) are discontinuous. Thus con-
vergence almost everywhere (as required in the
theorems) is ensured.

At this point we would like to indicate by an
example how one can choose W.(x, ') to fulfill
the condition described in the note following The-
orem 2. We consider the case

Wz, z') = = <log )(:z: - )™

b=1, A>0. 9)

It can be shown that the norm of this operator®
is [W| = \. If we now use the described step func-
tions for W,(x, z), the condition

[Walx, )| < A — gW(z, 2)/[W]  (10)

applied at x = 2’ = 1/n demands 2A» < (1 — ¢)
which excludes values of M in the interval 3 < A =
|W| < 1. However, the situation can be easily
remedied by a slight modification in W,(z, z’). We
take W,(z, z') to be zero whenever z or 2/ < l/n
where [ is a fixed integer depending on A (for in-
stance if A < 4, it suffices to take [ = 1).

Better results are obtained in practice through
more sophisticated integration procedures like for
instance Simpson’s rule, which in our case amounts
to replacing the given integral equation by the
following set of linear equations:

a=20,

Ue) = ole) + 2 K 22)0(ea)
+ $K(@:, Zai41) YX2541) + 3K(Esy Tajen) Y@aie2) ),
(11
where
= a + mh, = (b — a)/2n,
m=20,1,2,--.,2n,
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These approximate equations are equivalent to the integral equation

5@ = @) + [ "

are step functions defined as follows:

where ¢,(z) and K, (z, z')

eu() = o(z2;) for |z —

= ¢(T;+1) |z —

K. (z, ) = K(zy;, Z21) lz —
= K(xs;, Tox+1) le —

= K(22;41, Tar) |z —

= K(Zs541, Tar+1) |z —

These definitions are modified at points of dis-
continuity as mentioned above. As an example we
take K(z, ') = W(z, 2’} as given in Eq. (9). Since
the kernel becomes infinite at « 0 or 2’ 0,
we set K,(z, ') = Oforz < $h or 2’ < 3h. It may
also be verified that with this modification condition
(10) is satisfied for A < £. [For larger values of
A < 1, one would have to modify K,(z, ') from
the strict Simpson rule values for z < %k and
2’ < 3ilh where [ is some fixed integer depending
on \.] The theorems presented in this paper show
that the step function ¥,(z) defined as

Va(z) = ‘;(xzi)a |z — 22| < 3h
= Y(T2541), [ — 22541] < 3B

(12)

TasLE 1. Comparison of the matrix inversion solution to
Eq. (13) for mesh sizes 2n = 32 and 2n = 64
with the analytical solution.

¥(z)

z 2n = 32 2n = 64 exact
0.0625 0.024750 0.025160 0.025574
0.1875 0.016357 0.016433 0.016513
0.3125 0.013981 0.014015 0.014052
0.4375 0.012834 0.012855 0.012877
0.5625 0.012161 0.012175 0.012191
0.6875 0.011722 0.011732 0.011743
0.8125 0.011414 0.011421 0.011430
0.9375 0.011188 0.011194 0.011200

Ku(z, 2')¥u(a’) da’,

.| < %h,

Toiea] < %h,

Z5i] < %A, 2" — 22| < %A,
5| < %A, l" — Zoe1]| < %,
Tajsa| < 3h, 2" — 2| < 3R,
Ta41| < 3, [ — Zoar] < 3h.

converges in the mean to y(z) = (I — K) 'o(z)
as n — o,

In practice one deals only with the set of linear
equations (11). [Care need be taken only for the
values of ¢ and K at points of discontinuity: in our
example, we take K(0, z) = K(z, 0) = 0.] One
solves this system by numerical matriz inversion to
obtain a set of 2n 4+ 1 numbers for ¥(z,), ¥(z,),

-, ¥(,,) which represent a step function ¥,(x)
according to Eqs. (12). By increasing the number
of ““mesh” points, ¥,(z) thus obtained by mairix
inversion converges in the mean to the exact solution
of the given integral equation.

In order to test this procedure we applied it to
the equation'®

oy =1+ [ 1BEB oy i3)

for A = 1. We used the Simpson rule with 32 and
64 mesh points and compared the results of the
matrix inversion with the exact solution obtained
by the Wiener-Hopf method. Table I gives a sample
of the numerical results.
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A reinterpretation of Einstein’s tetrad geometry leads to new results if we abandon the over-
simplified picture of the vacuum as an almost empty Minkowskian manifold. The basic tetrad is
identified with the four principal axes of the matter tensor which belongs to a strongly curved fourfold
periodic Riemannian world. The macroscopic perturbation of the metrical lattice is investigated,
corresponding to a mere rotation of the principal axes and assuming the quadratic action principle
of general relativity. The perturbation Lagrangian yields the scalar E? — H? (and thus the Max-
wellian equations), although the basic manifold is strictly Riemannian, with a positive-definite

line element.

1. INTRODUCTION

VER since the successful completion of general
relativity, Einstein was looking for an all-com-
prehensive geometrical principle which would in-
clude electromagnetism and gravitation in a unified
world picture.” Since the equivalence principle has
shown that all forms of energy must influence the
geometry of the universe, it appeared imperative to
look for a basically geometrical interpretation of
all physical action. However, the difficulty existed
that Riemannian geometry seemed to be void of
antisymmetric elements. This suggested that we
must generalize the basic geometrical structure, al-
though none of the attempted generalizations could
compete in simplicity and naturalness with the orig-
inal Gauss-Riemannian concepts.

The postulate of “cosmic wisdom,” which asserts
the admissibility of a speculative (against the purely
empirical) approach to the fundamental problems
of the physical universe,” dominated Einstein’s en-
deavors during the last thirty years of his life. Al-
though contemporary physics denies the possibility
of such a program, Einstein’s thought construections
never lost their inherent magic. A revision of his
work may reveal the point, at which we have to
depart from his assumptions, in order to make
further progress in this field. In the author’s opinion
the fundamental departure must occur in the theo-
retical evaluation of the vacuum. The wave-me-
chanical phenomena of vacuum polarization and
zero-point energy clearly indicate that the vacuum
cannot be considered as something almost empty,
namely a small deviation from the flat Minkowskian
universe g = na(=0if 7 # kand —1, —1, —1, 4+
1, if ¢ = k) but as something strongly agitated. Is

1 A, Einstein, Sitzber. Preuss. Akad Wiss. 1925, 414 (1925).
: A. Einstein, Festschrift A. Stodola (Fiissli, Zirich, 1929),
p. 126-132,

such a possibility reconcilable with the apparent
validity of the Lorentz transformations? The answer
is yes, if we admit the possibility of a metrical sub-
structure of crystalline (fourfold periodic) character,
with a lattice constant of submicroscopic smallness;
(& = 10"*°cm, obtained by putting the fundamental
constants ¢, h, and 8z« equal to 1).> The objection
that such a lattice would establish a preferential
frame of reference is macroscopically invalid, as the
example of crystals of cubic symmetry demon-
strates.* Such crystals are in all macroscopic relations
entirely isotropic, although they have three well-
defined mutually perpendicular axes. These axes
are macroscopically equivalent, with the result that
their privileged position is macroscopically unob-
servable. Something similar may hold in relation to
the privileged axes of the metrical lattice.

It was in Einstein’s theory of “distant parallelism”
that four mutually perpendicular axes came in evi-
dence. Einstein postulated these axes, in order to
enrich Riemannian geometry by new elements,
namely the notion of “distant parallelism,” which
exists in Euclidean but ordinarily not in Riemannian
geometry.® For our present purposes the “local
tetrads” introduced by Einstein are eminently use-
ful, although not in the Einsteinian context. They
appear as the principal axes of the matter tensor;
(Ricel’s “principal directions”®). Hence they are
entirely within the scope of Riemannian geometry.
It so happens that Einstein’s tetrad geometry is
singularly well suited to the discussion of the quad-
ratic action principle in its relation to the problem of
electromagnetism.

? C. Lanczos, J. Math. Phys. 4, 951 (1963); Phys. Rev.
134 B476 (1964).

4 Cf. M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Inc., New York, 1959), p. 675.

& A. Einstein, Math. Ann. 102, 685 (1930).

8 Cf. L. P. Eisenhart, Riemannian geometry (Princeton
University Press, Princeton, New Jersey, 1925), p. 114.
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While previously the author focused his attention
on the scalar wave equation of a positive-definite
Riemannian space and endeavored to show that the
existence of high metrical ridges make signal prop-
agation possible by acting as wave guides, the present
paper pursues a different line. The maecroscopic
perturbation of the basic lattice is investigated,
which must come in evidence as a small deformation
of the basic tetrads. Such a deformation can be of
a twofold type; it can be “elastic,” influencing the
metric of the manifold, or purely ““rotational,” with-
out metrical change. The latter type of deformation
demands an antisymmetric tensor for its description,
which can be correlated to the electromagnetic field
strength. It is this type of deformation which is
investigated in the present paper, on the basis of
an action principle which is quadratie in the curva-
ture components and thus in harmony with the
demand of gauge invariance.” The result of this
investigation is that we obtain the Lagrangian
E? — H® of the electromagnetic field without any
artifices, on the basis of the general properties of a
(genuinely Riemannian) metrical field whose field
equations are governed by a quadratic action prin-
ciple.

2. EINSTEIN’S TETRAD GEOMETRY

In his celebrated investigation of curved surfaces,
C. F. Gauss introduced two differential forms for
the intrinsic and extrinsic characterization of the
geometry of the surface. The coefficients of these
two forms were not independent of each other, but
interconnected by a number of differential relations,
the “Gauss-Codazzi equations”.® A similar situa-
tion is encountered in the application of Riemannian
geometry to the problems of physics. The first
fundamental form is once more the line element of
Gauss-Riemann:

d32 = G dx" dil:k, (2.1)

but it was Einstein’s great discovery that the phys-
ical manifestation of matter, expressed in the form
of the energy-momentum tensor T, which gives
rise to the differential form

d’w2 = T,'], dx‘ dxk (2.2)
must be equated to a purely metrical quantity, ob-

tained with the help of the contracted curvature
tensor R, in the sense of the equation

Ta = Ri — 3Rga.

7 Cf. C. Lanczos, Rev. Mod. Phys. 29, 337 (1957).

8 Cf, e.g., L. P. Eisenhart, Introduction to Differential
Geometry, (Princeton University Press, Princeton, New Jersey,
1947), p. 219.
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It is true that if the g;, are given as functions of the
coordinates, the entire geometry of the manifold
is already determined. The matter tensor is ob-
tainable with the help of the first and second deriva-
tives of the g¢;.. Yet the matter tensor has a signifi-
cance of its own and is in a similar relation to the
metric as the electric current is to the vector poten-
tial. Given the vector potential ¢;, the current
vector p, is obtainable by applying the wave operator
on ¢;. But in physical problems the current vector
is the primary source of the field, from which the
vector potential is obtainable with the help of an
integral operation. Similarly the matter tensor can
be considered as the primary source of the field,
which is physically of greater importance than the
metrical field, in spite of the geometrical primacy of
the latter.

Einstein’s tetrad geometry provides us with a
mathematical tool for the simultaneous representa-
tion of both g¢., and T;,.. We consider the algebraic
problem of finding the four principal axes of the
tensor T';,. This problem is meaningful in a genuine
Riemannian geometry (of positive-definite signa-
ture), while in & Minkowskian world the eigenvalue
problem will generally not possess real solutions,
although it is entirely possible that in a given phys-
ical situation—such as Maxwell’s phenomenological
matter tensor—a real Lorentz transformation can
be found, by which the matter tensor can be diago-
nalized. In that case both eigenvalues and eigen-
vectors become real. We assume the positive-defi-
niteness of the lattice geometry on the basis that a
genuine Riemannian geometry is the most natural
generalization of our Euclidean concepts, while an
indefinite metric violates the minimum property
of the distance and does not satisfy the conditions
which we could reasonably demand of a rational
metric.” (The strongly nonlinear nature of the field
equations does not exclude the possibility that the
macroscopic geometry of the physically observable
phenomena may appear Minkowskian, as we will
see later.)

We now obtain four real eigenvalues and the cor-
responding eigenvectors, which we assume as uni-
quely determined, due to the distinctness of the
four eigenvalues. Of course, the gravitational equa-
tions R;, = 0 would make the eigenvalue problem
meaningless, but the existence of a highly agitated
metrical lattice means that the matter tensor is
strong at all points of the universe and thus the
principal axes at all points well defined.

9 Cf. The second paper quoted in Ref. 3, Eqgs. (1) and (2).
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With a slight modification we can replace the
matter tensor T,, by the somewhat simpler con-
tracted curvature tensor B;;:

R,-k = T.’k - %Tg;k. (2.4)

It is clear that T, has the same principal axes as
R, while the eigenvalues are shifted by a mere
constant., Hence we will consider our eigenvalue
problem in the form

Ruh* = 2.5)

to be solved at a given point P of the manifold. We
assume that the four (real) eigenvalues o, are dis-
tinet:

og aht

(2.6

o = 01y 02, 03, 04
and denote the corresponding four solutions by
hi — hs'l, hi2, hl'3, hl'4. (2.7)

Hence in the notation A** the first superseript ¢
represents a genuine contravariant index, while the
second superscript a, the “list index,” refers to a
mere enumeration of our four vectors. The pulling
up and down of covariant and contravariant indices
occurs in the usual fashion, with the understanding
that this operation is meaningful only with respect
to the jirst index:

his = gikhh- 2.8

(For the sake of convenience we write the list index
next to the component index, irrespective of what
type of component is meant.)

In matrix notation our eigenvalue problem can be
written in the form

RH = GHA 2.9)

where the matrices B and G are symmetric, while
Ais diagonal (with the diagonal elements 4, - - - , 7,).
According to the rules of matrix algebra we obtain
the orthogonality relation

HGH =1 (2.10)
which leads to
G=H"'H" (2.11)
and
R = H'AH™, (2.12)

Written out in components, the equations (2.10)
and (2.11) contain the fundamental operational rules
to which the four vectors A*® (which form the matrix
H) and the four vectors A;, (which form the matrix
H™) are subjected:
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guhB® = 8, (2.13)
B, = &, (2.14)
hhee = 63, (2.15)

gix = hicha. (2.16)

All these relations are contained in Einstein’s papers
on distant parallelism. To this has to be added an-
other fundamental relation which is not contained
in Einstein’s work, since he postulated the A;, quan-
tities without any relation to an eigenvalue problem.
Equation (2.12) yields

Ro‘k = a'ahiahka° (2'17)

This formula shows the peculiarity that the sum-
mation index occurs in three, instead of two, factors.
In order to avoid misunderstandings, we will discard
the eigenvalue o, in the counting of indices. Ac-
cordingly in a term of the form o,h:, the index a
shall not refer to summation, but denote a single
term, at variance with a term of the form h,h,,
where a is & genuine sum index.

The 20 quantities thus obtained (4s, and 164,,)
are characteristic for that particular metrical field
and are uniquely determined, except for an arbi-
trary transformation of the coordinates, which will
modify the four vectors k., in the sense of the trans-
formation

hia = (9f"/03)hya, (2.18)

where the four functions f*(z;) are defined by the
coordinate transformation

(2.19)

The eigenvalues o; remain unaffected by this trans-
formation. (We assume, of course, that the metrical
field g;; is twice differentiable and that the deter-
minant ¢ does not vanish anywhere in the domain.)

3. THE QUADRATIC ACTION PRINCIPLE

x; = ]“'(x;) e ,.’L';).

The operation with the four vectors k;, has some
definite advantages compared with the g.;, as it was
pointed out by Einstein. While the volume element
of a Riemannian manifold demands that we shall
take the square root of the determinant of the g,,:

dr = gt da* -+ - dat, 3.1
the corresponding quantity now becomes
dr = hdz' --- dz*, (3.2

where h is the determinant of the matrix h.,. Further-
more, the relation

Jir = hc’ahka (3.3)
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can be interpreted as the operation of taking the
square root of the metrical tensor. Considering the
relation of Dirac’s equation to the wave equation,
this can easily be of fundamental significance. And
in fact, a possible connection between Einstein’s
distant parallelism and Dirac’s equation was sug-
gested by Wigner'® and by Weyl,'" soon after
Einstein’s first publications in this field.

In our present investigation the h,, will play a
dominant role, not on account of Einstein’s motiva-
tion, but because they seem to provide an exception-
ally adequate tool for the discussion of the action
principle of general relativity. Einstein’s Lagrangian,
which leads to the gravitational equations, makes
use of the scalar curvature R as the basic invariant.
This now appears in the form

L=(0'1+"'+0'4)h=0'h

if we denote

(3.4)

c=0,+ -+ + o4 (3.5)

The much more complicated Lagrangian of the
quadratic action principle is reducible to the two
invariants'® R, R‘* and R® and can now be written
in the simple form

L = (e} + --- 62) — Cd’lh

where C is an g prior: undetermined constant. In
both cases we have to add the auxiliary condition

Uahiahku _ R,‘k = 0, (3.7)
where the contracted curvature tensor R, is defined
in the usual way by the differential operator®
R = log(d) o TG

T 9z, O g 0.

+ ol (3.8)
and g,; is to be replaced by (3.3). However, instead
of this substitution we will consider the g., as added
action variables, making use of the Lagrangian
multiplier method. Qur final Lagrangian thus be-
comes

L = [} — Co") — p™(ochichic — R

- wik(hiahka — gk (3.9
(the tensors p** and w'* are symmetric). The action
variables are the 16k, the 4o, the 10g,;, the 10p™
and the 10w**, altogether 50 quantities. The varia-
tion with respect to p** and w** yields, of course, the

10 B, Wigner, Z. f. Phys. 53, 592 (1929).

1 H, Weyl, Z. f. Phys. 56, 330 (1929).

2 Cf, Ref. 7, Eq. (5.1).

18 Cf, J. L. Synge, Relativity, the General Theory, (North-
Holland Publishing Company, Amsterdam, 1960), p. 17.
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auxiliary conditions (3.7) and (3.3). The variation
with respect to g, determines the Lagrangian factor
w**, while the variation with respect to the &, and
o, yields 20 equations, 10 of which determine the
Lagrangian factor p**, while the other 10 char-
acterize that particular Riemannian geometry, which
obeys the quadratic action principle.

Let us observe that L’ is purely algebraic, except
for R;. which is a differential operator of second
order. But the fortunate circumstance holds that
the second derivatives appear only linearly and thus
by integrating by parts we can change L’ to a
first-order operator. The term involving R,, can in
this case be written in the following form:

ik ik
aﬂ " o__ ap m tk n m m nn :I
[axm I‘zk axk le + p (F:mI‘kn I‘lmI‘kn) h-
(3.10)

We will also need the adjoint operator of R, ob-
tained by varying the g.; and integrating by parts.
Denoting covariant differentiation by ; we obtain

3(Rup™h) = B(p™)sguh
= hag;k%[pikgmn + pmngik _ pingmk _ plmgms‘];"m

(3.11)
and thus
B(™) = "™ + p™g"
= p"g™ = P ima. (3.12)
Variation with respect to g,, yields
w* = —B(p™). (3.13)
Variation with respect to ¢, yields
oo — Co = p*hihua (3.14)

(no summation over a), while variation with respect
to h;, yields
o® — CA® — 200" hs — 20, = 0. (3.15)
If the last equation is multiplied by 2™ (summing
over a) and we make use of the operational rules
displayed in Sec. 2, we obtain the relation

Lo — Co)g™ — p"R," — w'™ = 0. (3.16)

This equation shows the peculiarity that the first
and the third terms are symmetric in ¢, m but not
the second. In consequence we obtain

"R, — p™R, = 0. (3.17)

Let us write down the equations (3.14) and (3.17)
in the local reference system of the principal axes.
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Here
e = Beey (3.18)
R = 0.8,
and (3.14) becomes
o, — Co = p*, (3.19
while (3.17) yields
(00 = @)p™ = 0. (320)

But then (considering the distinetness of the o,), we
obtain

p* =0 (k). (3.21)
Now (3.19) and (3.21) can be combined to the single
equation

p-'k — Rik - CRgs‘k’ (3‘22)

which is first established in the reference system of
the principal axes only, but then, being a tensor
equation, must hold generally. The Lagrangian
factor p** is thus determined.

Our equations permit us to deduce two important
consequences of a quadratic action principle. One

Ry = NMa (3.23)

(M = const) is an exact solution of the field equa-
tions.™ In this case

p* = (1 — 40", (3.24)

Substitution in (3.11) gives w*™ = 0, while Eq. (3.15)
becomes

34N ~ 16CA)g™ — (1 — 40)%g™™ = 0,

which is identically satisfied.
A second conclusion is obtained if (3.12) is multi-
plied by g.:. The expression (3.11) shows that

B(pikgik) = %{(p&gl‘k);mngm” + 20" )y (3.26)

while mt_ﬁtiplication of (3.15) by ¢., yields for the
scalar w "¢, in the principal axis system (and thus
also generally)

W"Gim = (0, — Ca®) — (0: — Co)oy = 0.  (3.27)
Hence we obtain, according to (3.12) and (3.26),
Adp*ga) — P imn = 0, (3.28)

where A, is the four-dimensional scalar potential
operator. On the other hand, the conservation law
of the matter tensor yields, in view of (3.22),

pm»:m = (% - C)R,mgmns
1 Cf. Ref. 7, Eq. (5.16).

g; = "'o'*=)\.

(3.25)

(3.29)
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and thus (3.28) becomes
(1 — 40)AR + 2G5 — O)AR
=2(1 — 30)AR = 0

in harmony with the usual result.'®

(3.30)

4. ELECTROMAGNETIC FIELDS

We do not attempt here to demonstrate that the
field equations demanded by the quadratic action
principle allow solutions of fourfold periodicity. We
postulate the existence of these solutions, which
establish a metrical lattice with a laftice constant
of the order of magnitude ¢ = 10™*¢m. Our aim will
be to investigate the perfurbations of this lattice,
comparable to the bending of a crystal. The pertur-
bation shall be weak in comparison to the existing
field of the lattice and we assume it to be macro-
scopie, i.e., the deformation of the lattice shall be
such that it shall extend over many lattice cells
with practically constant amplitude.

A perturbation of this kind must come into evi-
dence in the form of a deformation of the local tet-
rads, i.e., the magnitude and the orientation of the
local tetrads must change slightly in consequence of
the superimposed perturbation field. Generally such
a deformation can be interpreted as a mere rotation
of the axes, plus a change of their mutual orienta-
tion, i.e., in physical terms an elastic deformation.
The latter type of deformation modifies the metrieal
tensor of the manifold. Einstein pointed out re-
peatedly'® that in first approximation electric and
gravitational fields must be considered as practically
independent of each other. If we accept the energy-
momentum tensor of Maxwell as describing the
macroscopic metrical effect of an electromagnetic
field, then the fact that this tensor is quadratic in
the field strength indicates that the metrical effect
of a weak electromagnetic field must become neg-
ligibly small. In that case an electromagnetic type
of deformation of the basic tetrad can only become
a mere rolation of the axes, without any change of
the g This harmonizes well with the antisym-
metric nature of the electromagnetic field tensor
F ., whose six components exactly imitate the six
coefficients of an infinitesimal Lorentz transforma-
tion. But what significance can we give to such an
infinitesimal rotation, if there is no basic frame which
is to be rotated? In the present theory the basic
frame exists in the form of the principal axes which
establish a natural frame of reference of the space~

i Cf. Ref. 7, Eq. (5.22).
18 E.g., Ref. 5, p. 696.
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time world. Einstein in his theory had the 16 com-
ponents h;, freely at his disposal by considering them
as the basic parameters of world geometry, for which
the proper field equations had to be found. He could
thus separate the symmetric and the antisymmetric
parts of h;, and correlate the former to gravitational,
the latter to electromagnetic effects. In our case such
freedom does not exist since the h;, are defined in
terms of a definite Riemannian geometry. If the
gix Temain unperturbed, then also the curvature
tensor R,, remains unchanged, and thus the principal
axes cannot change their orientation. A mere rota-
tion of the axes without elastic deformation is not
possible.

There exists, however, an exceptional case, in
which the metrical deformation can recede arbi-
trarily strongly in comparison to the rotation of the
axes, We have seen in Sec. 3 that the so-called
“cosmological equations” (3.23) are exact (although
by no means the only) solutions of the basic field
equations. If we acecept this solution, our principal
axis problem loses its significance, sinee all four
principal axes collapse into one and any four ortho-
gonal unit vectors can be chosen as principal axes.
An arbitrarily small perturbation can then cause a
finite rotation of the axes. We will assume that the
actual solution of the field equations, which belongs
to the metrical lattice, is near to the solution (3.23),
i.e., that our eigenvalues ¢, can be put equal to

g; = A+ ¢, 4.1)

where the ¢; are small in comparison to the large
constant M. Then we have distinet eigenvalues and
the principal axes of the matter tensor are well
defined. But we are still near to the case of de-
generacy and thus the tendency for a rotation of
the axes with practically no elastic changes will be
strong.

We will consider the weak perturbation of k,, in
the form

ohis = hk;ﬂﬁkn (4-2)

where ¢%; is an infinitesimal tensor of second order.
This is always possible, since multiplication by A™
yields

¢ = W™ ohia. 4.3)

The advantage of operating with ¢*; is that it is a
genuine tensor of second order, in contrast to the
four vectors dh;,. (In Einstein’s work this tensor
did not come in appearance since he considered
perturbations of the flat field h:;, = 8i, in which
case oh;, and ¢,; coincide.) We can equally lower
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the index k and write (4.2) in the form
6}7:“ = hkagﬁj,;. (4.4)

The tensor ¢.; need not satisfy any symmetry
conditions and has generally 16 components. How-
ever, the auxiliary condition (3.7) imposes a re-
striction on the permissible variations &h;,. Only
such variations are permitted which satisfy the
condition

5(0ahiahka) — 6R,; = 0. (4-5)

We will first consider a variation, in which ¢*; is
chosen as the gradient of a continuous vector field

k,
[N

4.6)

(the eigenvalues ¢, shall not be varied). Such a
variational field is certainly permissible, since it is
caused by the infinitesimal coordinate transforma-
tion

k %
P = ¢

dz'' = dz' + d¢', 4.9

where ¢°(z;) is an arbitrary vector field. The cor-
responding variation of g,; becomes

0guk = g"vn‘Pm;k + gm‘p'";.-

(4.8)
= i + Gris-
Similarly,
SRy = Rint"x + R s
= R 0m -+ By s

On the other hand, we consider the perturbation
field

4.9

(4.10)

in which case the variation of g:, and of s.hifu.
becomes

6ht‘a = maﬁoi smy

80u = @i T i (4.11)

oaa(hiahka) = Rsm%;m + ka‘m;m- (4-12)

The variation of g, is the same in both fields and
thus the difference of the two fields, that is

(4.13)

is free of any metrical change. This, however, can-
not hold without proper correction, since the second
field does not satisfy the auxiliary condition (4.5)
of the variation. The difference between the two
terms on the left side of (4.5) becomes

Rim(ﬁok,m - ‘Pn,k) + ka(sas.n - ‘Pm.s')
= RimFm + RhmFim'

o = Fy = PLik ™ Cr.i

@.19)
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This imbalance has to be corrected by a proper
metrical change. However, if we write down (4.14)
in the reference system of the principal axes, con-
sidering our condition (4.1), we find that the error
of our equation becomes

e&F +ally = (fk — €)F . (4-15)

The metrical correction needed is of the order of
magnitude

(en/NF iy (4.16)

which for our present purposes can be considered as
negligible. We have thus obtained a perturbation
field which in close approximation realizes the non-
metrical field of Einstein, represented in his case
by the antisymmetric part of k., In our case by the
antisymmetric tensor F;.

Before we proceed to the construction of the
perturbation Lagrangian, we make one more ob-
servation. We have seen in (3.30) that one of the
important consequences of a quadratic action prin-
ciple is that the sealar curvature R satisfies the four-
dimensional potential equation

AR =0 .17

(we exclude the singular value C = }), which in a
space of positive-definite signature allows no regular
solutions, except

R = const. (4.18)

This is an exact local first integral of the quadratic
action principle. It has fthe consequence that at
every point of the manifold

o+ - (4.19)

Now we will show that without loss of generality
this constant can be equated to zero. Instead of the
original A in the cosmological equations (4.1), we
can use & slightly different N = X + 1¢ with the
consequence that now the new e, = ¢; — }e satisfy
the condition Y ¢, = 0. Omitting the primes we can
immediately submit the ¢; to the condition

=+ - +e=0. (4.20)

This is of erucial importance for our later conclusions.

€, = const = e.

5. THE PERTURBATION LAGRANGIAN

We have assumed that the lattice structure of
our basic metrical field represents a regular solution
of the field equations of the quadratic action prin-
ciple. If now we want to investigate a weak pertur-
bation of the basic field, we are in a similar situation
as in the problem of “small vibrations around a state
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of equilibrium,” encountered in the mechanics of
solids. We have to obtain the perturbation Lagrang-
ian up to quantities of second order, since the first-
order perturbation vanishes, considering that we
have started with a genuine solution of the field
equations. The variation of this quadratic Lagrang-
ian will result in linear differential equations, ex-
pressing the perturbation (in our case macroscopic
perturbation) of the basic lattice vibrations. We
will not consider the problem in its full generality
but restrict ourselves to the perturbation studied in
the previous chapter, in which the variation of the
g becomes negligible and the deformation of the
lattice consists essentially in a mere rotation of the
principal axes. Moreover, we are not interested in
the local variations of the lattice field but purely in
the macroscopic change which extends over many
lattice cells. For this reason we will integrate the
second variation of L’ over the entire lattice cell
and minimize the resultant action, instead of ob-
taining local field equations by considering the
variational problem in its totality.

We consider the Lagrangian (3.9). The variation
of p** and w** give the following contribution to the
second variation of L;
—apik[a(aahinhka) — SRulh

- &wik[&gik — hishia)h. 6.1

Since, however, the factors of 8p** and dw*™ must
vanish, this part of 6°L’ can be omitted. What re-
mains, is the following contribution, caused by the
variation of the h.,; (in the perturbation field here
considered the ¢, are not varied):

L = 4[N + &)’ — C(dN + &*18°R

— hpika{,sk;a&hkc - kwikék;,,éhka. (5.2)
The factor of §°h becomes greatly simplified, in view
of the condition (4.20). We will consistently neglect

second-order quantities of the form e¢;¢;,. Then the
first term of (5.2) becomes

2(1 — 4CHN* 8%k, (5.3)
and our first task will be to obtain the second
variation of the determinant of the matrix A

Now the modified value of h,,, given by (4.4), may
be written in the following form:

hga = hz‘a + hkaﬁoki = hka(al: + ‘Pki)v (5'4)

and by the determinant theorem of the product of
two matrices we obtain

[IR&ll = R 1180 + o]

= h[1 + ﬁokk + ‘%(‘Pkk)g - %ﬂakiﬁa‘.k]- (5.5)
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Hence
26°h = h[((pkk)z — (akiﬂp‘k]' (5.6)
In our problem ¢;;, = F,, = —F,; is antisymmetric.
Hence ¢*, = 0 and we obtain
252h = —th'.F"k = hF;kF"],. (5.7)
We now come to the investigation of the second
term on the right side of (5.2). Here we obtain
(5.8)

and the complete second term becomes, if we sub-
stitute for p** its value (3.22):
_h[R‘.k - 4X0g‘.k]RimF,'ika. (5 .9)

Let us now introduce the reference system of the
principal axes as a local reference system. Here
the term (5.3) becomes

”uahiuahka = Rim¢f‘¢mk = Rimﬁoiiﬂomk

1 — 4O)N(F L), (5.10)
while the term (5.9) becomes
—lT.'(Tk(F,'k)z + 4XCG'|'(F”¢)2, (5.11)

but in the last term we can symmetrize o; and re-
place it by (3)(¢: + o). If we now make use of our
assumption (4.1) and neglect second-order terms in
€;, we obtain for (5.11)

—(1 — 4O)N(F o)’
— (& + e\l — 2C)(Fa)®. (5.12)

In the sum of (5.10) and (5.12), the term with A®
drops out and thus the contribution of the first two
terms of 8°L’ becomes

~M1 = 20)(& + &)(Fa)’. (5.13)

We now come to the investigation of the last term
on the right side of (5.2):

—hwik 6hiaahka = _hwikgimﬂoiiﬁomk
= _hwikF,,”'Fm], = hB(p‘k)Fm;ka. (5.14)

First of all we observe from the expression (3.12)
that if we put

p* = (1 — 4O)\g™* + 57, (5.15)

the first term gives identically zero. Hence in the
evaluation of (5.14) we can replace p** by $**, with
the consequence that we know in advance that
B(5*) will be of the order ¢;. Furthermore, let us
write R;; in the following form:

Ry = Re,-kmg’"'
= $[gir.im + Gimar —
+ (Tir.alims —

ik, im

Fim.arik.b)gab]gim-

Gim,ik —

(5.16)
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We notice that varying the g, and integrating by
parts we obtain a large number of terms which are
not more than derivatives. But integrating over a
whole lattice cell all these quantities must disap-
pear, on account of the periodic nature of our lat-
tice. The only part which contributes to our action
integral is obtained by varying ¢*° and g'™. The
resulting expression is of the general form

DA™, (5.17)

where A" has the symmetry properties of the
Riemann tensor. Since p;, is already of the order
e;, it suffices to know the tensor A"** in first ap-
proximation only, neglecting quantities of the order
¢e;. We assume that it is permissible to put with suf-
ficient accuracy

AT = aNg™g™ — g™, (5.18)

where « is a numerical constant. Then, if we utilize
once more the reference system of the principal axes
(which is permissible since the quantity to be eval-
uated is a mere scalar), we obtain

—a)\e,- 6,',, 8,‘]‘ 6,'"F,,"'F,,,]‘ = —QC)\GE(F,,,),)z
= —3aNe + ek)(Fik)z'

This term ts once more of the general form (5.13).

In summary we can say that the resulting per-
turbation Lagrangian is proportional to the fol-
lowing scalar:

%(Ec + Gk)(F.'k)z- (5-20)

The six terms of this sum show a remarkable prop-
erty. Considering the condition (4.20) between the
eigenvalues ¢;, the six terms split into the sum of
only three terms

(51 + 52)(F§2 - F:fu) + (62 + 63)(F§3 - F?4)
+ (53 + e1)(F§1 - ;4), (5.21)

and if we assume that the average values of ¢, e,
and e, integrated over the entire lattice cell, are
equal to each other, we obtain (in customary nota-
tion) the Lagrangian of the superimposed pertur-
bation field as proportional to

H — B (5.22)

We have thus obiained the customary Lagrangian of the
electromagnetic field—and thus the Maxwellian equa-
tions—in spite of the fact that the basis of our
consideration was a genuine Riemannian metric, with
a positive-definite line element.

This result remains unaltered by the following
modification. In evaluating the perturbation La-
grangian we had to know the perturbation field in
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second approximation. This brought in the produects
6hohy, while 6°h;, was considered as zero. But if in
the representation (4.2) we consider ¢} as a constant
tensor, then the second variation of k,, is not zero
but becomes

62h|'a = hmaﬂ’mk(okc' . (5 -23)

The addition of these terms does not change, how-
ever, the resulting expression (5.21) of the pertur-
bation Lagrangian—it only modifies the constant
factor by which it is multiplied.

The weakness of the present development is that
we do not know enough about the structure of the
basic lattice field and had to make assumptions con-
cerning its behavior, which must be corroborated
by future research. We have, furthermore, focused
our attention on the electromagnetic field, neg-
lecting the gravitational effects and the possible
interaction between the two types of fields.

However, our results permit us to draw the fol-
lowing general conclusion. If we erect the perturba-
tion field on an empty (flat) universe, then the
perturbation Lagrangian must be interpretable as
a mere scalar of a certain (constant) metrical field.
But if the perturbation field is superimposed on a
metrical crystalline lattice, then this lattice will
impose its own structure on the perturbation La-
grangian, although we know in advance that the

C. LANCZOS

high-frequency periodicity of this lattice can only
give rise to constani tensors (comparable to the
dielectric tensor of a crystal). In that case the posi-
tive-definite nature of a Riemannian line element
need not come in direct evidence in the perturbation
Lagrangian and the Minkowskian geometry might
merely be an attempt to interpret the superposition
Lagrangian as an invariant of a properly chosen
metrie, although in fact—as we have seen it in the
calculations concerning the electromagnetic field—
this Lagrangian is an invariant of a much more
complicated type, vitally influenced by the (highly
agitated) metrical substructure. The Riemannian
line element and the apparently Minkowskian nature
of the superposition field are thus in no contradiction
to each other.
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Several methods of treating Euler transform integrals exist. One such method follows from the
expression of the Euler transform kernel as a bilinear series of independent solutions to the Jacobi
equation valid for the integration variable in the real interval —1 to 1 and the transform variable
outside. The transform function then is expressed as a series of solutions of the second kind to the
Jacobi equation whose coefficients are the expansion coefficients of the function to be transformed in
the complete set of Jacobi polynomials, provided the latter exist. Such a series is absolutely convergent
for the transform variable not on the real interval cited above. Another method, due to MacRobert,
permits quadrature of the Euler transform integral directly for certain integrands. Finally, the
expansion of the Euler kernel in a bilinear series of Bessel functions and Neumann polynomials valid
for the integration variable on the finite interval, 0 to a, is mentioned, and applied to several inte-

grals. Examples of all three methods are given,

INTRODUCTION

N certain applications of applied mathematics
such as the study of potential problems in
quantum mechanics or plasma physics, integrals
of the Euler transform type occasionally arise;

0@ = [ - 271 o

where f(z) is sufficiently well behaved to be uni-
formly approximated on the interval [—1, 1] by a
complete set of polynomials, and g is any number
such that Re u > 0. If the order of the transform p
is an integer, the restriction that z not lie on the
real axis segment, [—1, 1] may be relaxed by
taking the principal part of the integral. As it
stands, g(z) is an analytic function of z for all
neighborhoods not overlapping the real axis cut
as given above, and therefore the kernel may be
expanded in a Taylor series such that the inte-
gration may be carried out term by term. There is,
however, another expansion of the kernel in a bilinear
series of functions which are solutions of the first and
second kind of a hypergeometric equation. This
representation of the kernel is also absolutely
convergent for all z restricted as above; therefore
term by term integration in Eq. (1) is also justified.
However, solutions of the first kind with integer
indices are polynomials that form closed sets on
the interval, [—1, 1] with respect to specified
weight functions. Thus ¢(z) may be expressed as
a series in solutions of the second kind with coef-
ficients that are the expansion coefficients of the
arbitrary function in the polynomial set. An obvious

* This research was carried out under grant NsG-275-62
from the National Aeronautics and Space Administration.

advantage of this kernel representation follows if
f(z) is orthogonal to all but one of the polynomials,
in which case g(z) is proportional to a solution of
the second kind. From a numerical point of view,
expression of g(z) in a series of solutions permits
the use of recursion relations to “build up” the
series as might be done in a computer evaluation
of ¢(z). Finally, the establishment of a bilinear
expansion of the Euler kernel permits the extension
of integral tables to cover integrals of the type
shown in Eq. (1) if the appropriate expansion
coefficients are already evaluated. Examples of a
few of these integrals are given in Appendix A.

The following three sections summarize the
development of several bilinear expansions, and
treat the Euler transform of a special integrand.
The first of these reviews some basic properties
of the Jacobi function system necessary to sub-
sequent development.

JACOBI FUNCTION SYSTEM

The hypergeometric equation with three regular
singular points located at =1 and « is known as
the Jacobi equation. Its two independent solutions
are characterized by three parameters «, 8, and n;
if the latter is integer, one of the two solutions is
a polynomial of order n. The second solution is
regular everywhere in the complex plane but has
branch points at 1, with a branch cut joining
these two singularities to make it single-valued.
The Jacobi polynomials, or solutions of the first
kind, form a complete set on the closed interval —1
to 1 with respect to the integer index n and a weight
function given in the table below. At infinity,
these polynomials have a simple pole of order =.
Both solutions satisfy well-known recursion formulas
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TasLe I.
Weight function,
(e, B) Name Symbol Wi Normalization, N
o +8+1
Jacobi P (L2l — ) oL Fat DI £4 + 1)

= = —_ A =
a =8 =X — 3 Gegenbauer C, TETO + 1 + 1)

«=f=—} Tchebycheff __nird) (4D
1st kind "2 4+ p) "
e Tchebycheff _n + DITG) og.0
@*=f=%  odkind U amm+p 17
a=8=0 Legendre P, = P{"®

2N 4 2)r(\ + 3) SRS

nl2n +a+ 8+ e+ 8 +n+1)
72722\ + n)

— gyt
== 2+ VIO
(1 -2t Ia#£0; mn=0
(1 — 2 Inn=0; mn=0
2
1 2n 41

given elsewhere.! For certain specified values of
the parameters «, and 3, the Jacobi polynomials are
proportional to the Gegenbauer, Tchebycheff, and
Legendre polynomials as shown in Table 1.

The parameters «, 8, and A have real parts greater
than —1. Thus we see that any result that holds
for the Jacobi polynomial system is also true for
any of the systems listed in the table. For the purpose
of conveniently expressing later results, we introduce
a general polynomial/function system in the next
section. These are the Jacobi solutions for arbitrary
a and 8 but with an additional multiplicative factor
to account for the various interrelations among
the polynomial sets given by special values of «, 8
as listed above.

As shown in Appendix B, the Euler transform
method solution of the Jacobi equation leads to a
convenient integral representation of its solutions.
The choice of the contour determines which of the
two independent solutions is represented; and, for
the real interval [—1, 1], we obtain the integral
form of the Jacobi function of the second kind:

Q'('a.ﬁ)(z) — 2—n—1 '/;ll (z _ t—n—a—ﬂ-l

X @+ 9™ @ —*fa. (2

Here z €& [—1, 1]. This function satisfies the same
recursion formulas as P{*'?, except for n = 0,
and if Re (¢, 8) > —1 and is analytic everywhere
except for the branch cut between —1 and 1. Its
value on the cut is defined to be

1 Bateman Ma.nuscl:l]ift Project, Higher Transcendental

Functions (McGraw-Hill Book Company, Inc., New York,
1953), Vol. I1.

P (z) = QP (z + i0) + Q1P (z — 40)]
-1
" 2rsinar

n 2°** cosam T(@) T(n + B+ (1 — 2)"*(1 + )~
Tn+a+8+4+1)

XFn+1, —n—a—8;1—a;3— i2);
—l1<z<l. (3)

The latter equality follows from considering the
contour integral about the branch cut and taking
the limit Im z = 0; and F is the hypergeometric
function ,F;. Additional properties of the solutions
of the second kind associated with the Jacobi,
Gegenbauer, Tchebycheff, and Legendre polynomials
are found in standard texts.'

It is known from the theory of the hypergeometric
function that these quantities map into themselves
under the fractional linear substitution:

t' = (At + B)/(Ct + D); AD —BC #0. (4

Therefore it is possible to obtain several equivalent
integral representations of the same solution. One
very useful form is derived from Eq. (2) by the
substitution

t = —z—-(l-l-u)—l/ Ltu 4L @)
142 142

Equation (2) then reads

P*%(a)

2P. M. Morse and H, Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York,
1953), Vol. 1.

3 b, Hobson, Spherical and Ellipsoidal Harmonics (Chelsea
Publishing Company, New York, 1955).
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Q@) = 2 — 177 + 1)
x [ 1 du (z — w1 4 WML — W)™
2 [-1,11. (6

In a similar manner, the integral representations
of the polynomial solution may be developed:

PP = 27 (@) ' — 2 * A +2)7°
X Sg (@ — w1+ WU — W)™ du;

—-1<2z2z<1. )

Here the phase of the integrand has been chosen
such that P{*'? is real for z on the positive real axis.
The selected contour encloses the points z and 1
where the complex plane has been cut from —1 to
— «, These two relations may be combined to
give the key equation upon which this paper is
based. First we see that the integrand of Eq. (7) is
analytic everywhere in € except at z, and hence
its residue is (n1)"'(—1)" times the nth derivative
of (1 4+ 2)"**(1 — 2z)**°. Therefore the polynomial
P{*® ig expressed by Rodrigues’ formula

1= 20 + ) H=D" d"
2"n! dz”
X (1+ 2™ — ™ (®)

Now, since the integrand of Eq. (6) vanishes at
u = ==1, the integrated terms vanish upon integra-
tion by parts to give

(z— D"+ DP(—1)"
2% 'nl

PP () =

Q%) =

! 1 dﬂ nta %F
X[ gop@E-oratta. ©

Rodrigues’ formula may be substituted for the
integrand in the above equation to give the funda-
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mental relationship between the polynomials and
solutions of the second kind, often called the

Neumann integral,

QP& =2 - D+ D
X f = 07+ 0 — 9Pt (10)

Here z €& [—1, 1]. The equation may be extended
by definition to values of [Re 2| < 1, Im z = 0,
if the principal part of the above integral is taken.
This Euler transform relationship holds for all of
the specializations of the Jacobi polynomials and
solutions of the second kind as listed in Table I.

BILINEAR EXPANSIONS

The Jacobi polynomial system and its speciali-
zations form closed sets on the interval [—1, 1]. In
order to express this property as well as subsequent
expansion formulas, it is convenient to introduce
a general polynomial of the first kind y{*'®, and
a general function of the second kind »{*'®, which,
for special values of their indices are proportional
to various of the polynomial systems listed in
Table I. Thus, for « and 8 as given in the table
below, we have

N5

p }
N
{so,‘.“ #

—BeP % {any of the Jacobi polynomial/function|
T systems given in Table I

The constant of proportionality, B{*'® has the
values given in Table II.

The general polynomials are orthogonal on the
closed interval from —1 to 1 with respect to the
weight function w(z) for different integer indices:

1
f w(x)gbff’ﬁ’(x)xlz;"'ﬁ)(:c) dr = mia.ﬁ) e
-1

Taze IL
o B Name Polynomial /function Bl®
e, 8 Jacobi PR (z);  QfP(z) 1
» — 3,2 — } Gegenbauer CNz); Diz) P2MTN + § 4+ n)/ (TN + n)T(N + 1)}
S A S A O TP Xe Ttn + H/(XHT + 1)
b ool gy S Tn + H/ITHIn + 2)}
0,0 Legendre Pufz);  Qul2) 1
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The normalization constant for the general poly-
nomials is related to those given in Table I for
the indicated choice of parameters by

m:u.ﬁ) = [B(a.ﬂ)]2N(a.B) .
The closure relation for the general case is

w@) 3 TP @)

n=0

X P = 8@ —2). (1)

It follows immediately from this result and the
Euler transform relation between the polynomials
of the first kind and functions of the second kind,
Eq. (10), that (z — z)™* has the expansion

(z— 2" = 2(—Dw()

X 3 (5P @l P ).

n=0

(12)

This equation is the familiar Christoffel-Darboux
identity as the upper limit on the index n passes
to infinity. It may be derived from the recursion
relations of three different indices satisfied by all
of the Jacobi family for any upper limit, as shown
in Bateman.! For fixed 2, the region of absolute
convergence for z is any point on the interior of
an ellipse, passing through z in the complex plane
with foci at 1. The quadrature formulas now
become straightforward in terms of this expansion.

A generalization of Eq. (12) to integral powers
of (z — z)™' follows from the definition of the
associated polynomial and function of the second
kind. Let these quantities be defined by

wmmgy o @ = DA e )

wz) do" =
and
aerme = Eo L @), a9

where the index m is integer and positive. It may
easily be shown that these functions satisfy the
associated equation.

Q=2 +B—a—(e+8+ 2y
+@m—mn+m+tatp+ y=0,

where y represents either type of solution. Recursion
relations for these functions follow from the above
equation and the previous definitions. Integral
representations follow from the definitions and the
integral representations of the nonassociated quan-
tities previously discussed. Thus differentiation of

(15)
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Eq. (12) with respect to z leads to the required
generalization of that formula in terms of the
associated functions of the second kind:

(e =27 = (m)72A(=D""w@EE - 7"

X 3 (P T P @)k ).

n=0

(16)

If, in the integrand of Eq. (1), h(x) is defined by
f(x) = w(z)h(z) and p = m + 1 then that integral
becomes, in view of the expansion developed above,

Y w(x)h(z) dx

1 (Z . x)mi—l

_ ED"Mw@E@ — O

9(x) =

(a,B) (a,Bim)
m' E An ¢n # (z)) (17)
. n=0
where the coefficients of ¢{*#*™ are

1

4e® = 20?1 [ w@u P @ha) dz. (18)
-1

By this means we have expressed g(z) in an ab-
solutely convergent series for all z € [—1, 1], and
have reduced the integral to the problem of deter-
mining the coefficients given in the above equation.
In cases where these are listed in integral tables,
or may be easily determined, the tables then can
be expanded to include generalized Euler transform
integrals of the type given in Eq. (17). As an
example, consider h(z) = cos az; w(x) = 1;¢{*? =
P,(z); and ¢{**” = Q,(2); then we have

1 ©

[ eosaate — 97 dz = 3 4.0,

n=0

} ©
= (il) Ea (=D¥@n + DIy @@u(z),  (19)

even

where

o\ .
An = (;-1‘.) (2n + ]-)(-].)i J,,H(a); n = even, (20)
0; n = odd.

Other examples are listed in Appendix A.

A simple generalization of the integral shown
in Eq. (1) follows by replacing the denominator
by a polynomial of finite order whose roots do not
lie on the real axis segment, {—1, 1]. By means of
an improper fraction expansion, the integral may
be reduced to a sum over distinet roots of integrals
of the form shown in Eq. (17). Here, the integer
m - 1 is the order of the degenerate root if m > 0.
Integrals with polynomial denominators that do
have a finite number of roots on the real axis
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segment may be handled in like manner, but with
the real axis segment definition of functions of the
second kind, Eq. (3), and replacement of the integrals
with their principal values.

A third method of expansion of an Euler kernel
depends on the fact that the integral representation
of the solutions of the second kind, Eq. (6), is
valid for any n whose real part is greater than
minus one. Thus we show that a bilinear expansion
exists for the quantity (z — 2)™" !, for Rey > —1.
For clarity, we explicitly indicate the parameter
dependence of the weight function as superscripts.
Now from the choice of the parameter B given in
Table II it follows that Egs. (8) and (68) may be
taken to be definitions of the general polynomial
and function of the second kind, respectively. If,
in the latter equation, n is set equal to I + v, where ]
is a positive integer, Eq. (6) becomes

by _ (=D
ol2P() = T B )
Y dtw P —~ Ht
21
X -1 (z_ t)H“H-I ( )
But
w(“'ﬁ)(t)(l — tz)“'" = 'w("”'ﬁ”)(t)(l — t2)l’

and therefore, after integrating Eq. (21) 1 times
by parts, we have

(=D**'T(y + 1)

ety () =
2" P AT+ + 1)
! dt _(Zf_ (aty,B+v) — 2y 1
X ot pmat 01— o' @

As in the previous cases, the integrand vanishes
at the end points, and thus the integrated terms
are zero. Rodrigues’ formula may be used to replace
the derivative appearing in the integrand with
the appropriate general polynomial to give the
following integral representation:

@ + 1)1rd + D(=1*

(o: L)
Llyy () (a,ﬁ)(z)r(l + ¥ + 1)2'{+1
1 dt Caby BEIpp platy By
— et i ' . (23
X [, g TR0, @)

The elosure formula, Eq. (11), may now be applied
to extraet the denominator; thus

(2 — 2" = (=D wP@E) 2 (T
i=0

Tl 4+ v + D2
T'(y + D!

X 4T @l 6) @0
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In this formula, as in others, z is assumed not to
lie on the cut. Several interesting cases arise from
particular choices of the parameters «, 8, and 7.
For example, if @ = § = 0 and v = —}, the above
equation reduces to

Z Q- ;(z)T,(x),

which, if the interval is changed to 0, = becomes
the Fourier cosine expansion of the square root of
z — cos 6. The functions Q,_; are analytic everywhere
in the complex plane with logarithmic singularities
at =1, and discontinuous along the cut from —1to 1.
These functions arise in the theory of toroidal
harmonics, and are discussed by Hobson.! This
same quantity (z — z)"! may be written as a
bilinear series in Legendre polynomials by setting
a=f8=3%v = —% The result is

— ¥t ; IP,(2)8:(2),

where S;(z) is a Tchebycheff solution of the second
kind defined by

Si?) =27 — D7}

X f” 2 (z — (1 — DIV dt.

@~—at “—'Q&()+ (25)

-2t =( (26)

@7

Quadrature formulas applying these expansiong
are straightforward, and examples are given in
Appendix A,

As a concluding remark on this section on bilinear
expansions, we briefly comment on one other
bilinear form for the Euler kernel. As shown in
Bateman,' for z in the finite interval, [0, a], and
for |zj > |z|, an expansion of the Euler kernel
may be written

]

=2 &0
J

e

@—a)"

(&) () ;

g=1 n=0; e.=2, n>1,

The coefficients of the Bessel functions in the above
equation are (Neumann) polynomials in 27! of
degree one greater than the order and are bounded
for large z by an exponential form in 2*. Therefore
the expansion shown above is absolutely convergent
whenever |x| < |2|. These polynomials, however,
do not satisfy Bessel’s equation for arbitrary index n
and therefore do not possess the same relationship
to the Bessel functions as the Jacobi polynomials
do to the Jacobi solutions of the second kind.
Recursion relations, and integral properties are
found in the above reference to Bateman. Several



330

examples of this type of integral are included in
Appendix A.

A SPECIAL INTEGRAND

Special methods for carrying out the integration
of Eq. (1) for certain integrands exist. One, due
to MacRobert,* is given below. Consider the quantity
£2(2) to be defined as

] S (e, (_l)a
32 = Fou P (2) — PRI
1
X | (— 07y mw @) dt. (28)
-1
We now may show that for ¢ < n, {3(z) = 0. From

the Euler transform relation between solutions of
the first and second kind as given in Eq. (10), we

may substitute for ¢{**® in the above integral to
give

n (—l)a fl -1/ a q

2) = ————— z—1t) (& — 1t

556 = Gy €~ 076 = )

X PP (Hw' =P (1) dt. (29)

However, for ¢ < n, (" — t9)/(z — t) is a poly-
nomial of ¢ — 1 order, and hence is orthogonal to
the general polynomial ¢{*'”, in Eq. (29). Thus
¢r = 0, from which it follows that

('—l)a ! —14a
w(a.ﬂ)(z) j:_l (z - t) £

X PP w P ) dt.  (30)

Or, by taking the appropriate linear combinations
of this expression, it also follows that

(=D*
2w P (2)

c (a 5)(2)

P RAP @) =

X [ = P OUEPOuP @ dt. (31)

This result may be generalized somewhat by setting
g = n + 1. Then, by the arguments above we have

toa(®) = (=D27w P ()]

X f_ 1 P Ow @) dt. (32)

To evaluate this integral, we replace the polynomial
by Rodrigues’ formula and integrate by parts n
times. We then obtain

o) = (=172 w P @]

4« T. M. MacRobert, Proc. Glasgow Math. Assoe. 1, 10-12
(1948).
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Yw'f(t) dt.  (33)

1
xf a-2e
-1

This integral is just the normalization integral for
the Jacobi polynomials with n set equal to zero,
and « replaced by n + « and g replaced by n + 8.
Therefore

@ =2 + a4+ 1)

X T(n + 8 + 1)/ {w*?@Tr@n + « + 8 + 2)},
(34)

and finally giving the result

( e f Py P (P dt
w e ﬂ)(z) (Z — t)

_ (—1)“2"*'**"r(n +a4+ DR 484+ 1)
w*PRAren + o+ 8 + 2)

Again, after taking the appropriate linear combi-
nations of the above equation, it may be shown that

YL@ @) = ()2 P T

Xf (Z t) ¢(a B8 (a.ﬁ)w(a.ﬂ) dt

Zﬂ+l¢;a'ﬂ)(2)

(35)

2" @ntat+B+2)M(etnt DTE+n+ (=D
n! T'(2n+a+B+2)w " (2)

+
(36)

The convergence of these integrals for large 2z is
shown in the case of the Legendre functions for
all real indices in the reference cited above.

COMMENTS

The expansions of the Euler transform kernel
and its generalizations given above represent a
general technique for the reduction of the genera-
lized Euler transform integrals as shown in Eq. (1).
In each case, the quadrature is expressed as a
series, convergent for all values of 2z not on the
branch cut, of functions that form the second
solution to the variation of the Jacobi equation
as listed in Table I. The well-known recursion
relations and asymptotic behavior of these functions
are valuable aids in the numerical computation
and analytical study of integrals of the Euler
transform type.
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APPENDIX A

A miscellaneous collection of integrals evaluated
by the procedures discussed in the text is listed
below. The appropriate expansion coefficients are
taken from Refs. 5 and 6. Integrals involving the
general polynomial/function system defined in the
text are valid for all of the special cases of the
Jacobi polynomial/function set. Roman indices rep-
resent positive integers or zero; Greek indices
represent numbers restricted by the requirement
that their real parts be greater than —1 unless
otherwise noted. The variable z is an arbitrary
complex number not lying on the real axis segment
—1, 1 unless otherwise noted. Integrals with a
slash are principal parts.

fl ‘l/ia,ﬂ)(x)w(u,ﬁ)(x) da
(@ + bz
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(McGraw—Hlll Book Company, Inec., New York, 1953), Vol.
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(Springer-Verlag, Berlin, 1961), 2nd ed.
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Properties of the Neumann polynomials are given
in Ref. 1.
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APPENDIX B

The Jacobi equation is derived from the hyper-
geometric equation with three regular singular
points at 0, 1, and « by an appropriate coordinate
change and linear combination of parameters such
that the new equation has its singular points at 3=1
and . Written in standard from, the Jacobi
equation is

fo-o T p-a-erotral

+nn+a+ 8+ 1)}3/(96) =0, (Bl

where the parameters o and 8 have real parts > —1,
and the index n is taken as integer. In this case,
one of the two independent solutions of the above
equation is a polynomial, regular at =£1 and having
a simple pole of order % at infinity; the other solution
is a function, regular at infinity and single-valued
if a branch cut is made on the Riemann sheet
between the branch points —1 and 1. An integral
representation of the general solution of the above
equation may be had by means of a generalized
Euler transform

W) = § @ — 0o dt (B2)

where u is a parameter to be fixed, and the contour C
will determine what linear combination of the
two independent solutions w(z) represents. Let
L, stand for the operator in Eq. (B1), then there
exists an operator A such that

Lz — ™ = Az — )™, (B3)

where A operates on the variable ¢ and is a linear
operator with the same type of coefficients for its
second and first derivatives as appear in the operator
L. These coefficients may readily be determined
by a Taylor expansion about ¢ of the correspondent
coefficient of the operator L in the above equation.
We find that

A=A -O5 -+ @+s+20%
+nnt+a+B+1) —puut+at+ps+1). (BY

The adjoint operator A is determined from the
above by Green’s theorem and turns out to be

Z.=§:—z(l—t’ —d%[a—ﬂ+(a+ﬁ+2u)t]

+nan+a+B8+1) —putasd+p+1). (B
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Now all of the above equations can be combined
to give the following sequence of results:

0=Ly

= 95 Lz — 8™ dt

- 95 Az — O*(0) dt (B6)

-4

c

@ — A dt + 99%{(1 -9

X [v(t) La— o> —@— o %v(t)]} d.

Now any contour that forms a complete circuit
in the Riemann sheet or any open contour that
begins and ends in a zero of the integrand of the
second term (the bilinear concomitant) will cause
that term to vanish. Since v(¢) is as yet arbitrary,
the satisfaction of the resulting equation demands
that

Loty = &1 - Poco]

~ 2 ffa— 8~ (a+ 8 + 20000

+nnt+at+B+1)
— plp 4+ a4+ 8+ D) = 0. B7)

We have, as yet, not chosen the parameter pu.
Quadrature of the above equation follows immedi-
ately if the last term vanishes; therefore it follows

that
u —3 .
—n—a—F—1

If »(?) is not to have an essential singularity at ,
the constant of the first integration must be taken
to be zero, therefore, the second integration can
be readily performed to give

o(t) = A + ™1 — ™2, (B8)

Hence, the general solution to the Jacobi equation
may be written

@) = 4§ @ — e

X 1+ )1 — o~P dt,

where we have made the choice g =

(B9)

—_n — @ —
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B — 1, and A is an integration constant. The
combination of fundamental solutions that y(x)
represents is determined by the choice of the
contour in the above representation. It may be
shown that if a simple loop enclosing the point z
on the line segment [—1, 1] and 1 is selected, with
the branch cut made from —1 to — e, y(z) is
proportional to the Jacobi polynomial, P{*®(z);
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and on the other hand, if the contour is chosen
to be the real axis segment from —1 to 1, the second
solution, Q{**#(z) is represented if z does not lie
on the real axis segment. The proportionality
constant in both cases is the integration constant A,
and turns out to be 27" as determined by com-
parison with the hypergeometric series solution of
the same equation.

Orbits in a Magnetic Universe

M. A. MELVIN* AND J. S. WALLINGFORD

Physics Department, Florida State University, Tallahassee, Florida
(Received 22 June 1965)

A cylindrically symmetric parallel bundle of magnetic lines of force, in equilibrium under their
mutual gravitational attraction (“magnetic universe’’), has recently received attention. While a
Newtonian analysis suggests that the equilibrium is unstable, the complete general relativity analysis
shows that the equilibrium is stable. This discrepancy may have to do with the unusually slow falloff
of the gravitational field at large distances in this geometry. In order to understand the gravitational
field of the static magnetic universe somewhat better, we have studied its timelike and lightlike
geodesics (i.e., the orbits in it of electromagnetically neutral test particles with unit or zero rest mass).
Since the density of magnetic flux—and energy and stress and, therefore, ‘“gravitating mass’’—is
approximately uniform in the vicinity of the axis, the motion of test particles there is like that in a
Newtonian simple harmonic oscillator field. “Vicinity’’ here means within a small fraction p of the
range radius @ = (6.96/B,) X 10%* cm (B, is the magnetic field on the axis measured in gauss). As is
to be expected from the universality of the angular frequency wo in the harmonic oscillator field and
the relation: orbital velocity & wop, no motion can get too far from the axis. Otherwise the physical
orbital velocity would exceed the speed of light. It is in this way that the strength of the attractive
field, though it does not remain strictly of the harmonic oscillator type as one proceeds outward, im-
plies that there is a critical straddling radius p = 1/4/3. Circular or circular helical light tracks occur
only at the critical radius, and with B, = 10° G, the time required for light to circumnavigate the
critical circle is about 200 years. The cylinder marked out by this radius plays a unique limiting role:
All particles, whether of zero or nonzero mass, and no matter what their initial positions and velocities
(except in the one singular subcase of light tracks parallel to the cylindrical axis), must have their
orbits lying wholly or partially within the cylindrical region p < 1/+/3; hence the use of the adjective
“straddling.”” Constants of motion which correspond closely to {-component linear momentum, angu-~
lar momentum, and energy in Newtonian mechanics are defined. Bounds are placed on these dynami-
cal constants and on the apsidal radii by the requirement that the range of motion be real. Finally,
the magnetic universe is complete in the sense that “no news can enter or leave’’—all orbits are of
infinite duration.

I. INTRODUCTION, MOTIVATION, AND
SUMMARY

RAVITATIONAL collapse has recently re-
ceived increased attention both as a process
posing fundamental issues of principle' and as a
mechanism conceivably primarily responsible for the
~ 10* ergs of energy output of quasistellar sources.’

* This work was performed in part at the Oak Ridge
National Laboratory.

1 See, e.g., J. A. Wheeler, “Geometrodynamics and the
Issue of the Final State,”’ a chapter in Relativity, Groups and
Topology, edited by C. DeWitt and B. S. DeWitt, (Gordon
ang Breach, New York, 1964); and Gravitation Theory and
Gravitational Collapse (Proceedings of the December 1963
Dallas International Conference on Gravitational Collapse)
(University of Chicago Press, Chicago, 1965), Vol. II.

3 See Vol. I of the Proceedings cited in Ref. 1.

In connection with the study of collapse, it is im-
portant to distinguish between energy-carrying sys-
tems which are unstable against gravitational infall
and those which are stable.

Among configurations which are in static equilib-
rium under their own gravitational attraction, one
of the simplest and most interesting is a parallel
bundle comprising some specified number of mag-
netic lines of force, .>* The density B of lines of

3 M. A. Melvin, Phys. Letters 8, 65 (1964). See also W, B.
Bonnor, Proc. Phys. Soc. (London) 674, 225 (1953); M. Misra
a]rglszls. Radhakrishna, Proc. Natl. Inst. Sci. India 28A, 632
( 4M.A. Melvin, “Dynamics of Cylindrical Electromagnetic

gxéiﬁxga)rses," ORNL-3758 (April 1965); Phys. Rev. 139, B225
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force is finite at the center of the configuration and
falls off with radial coordinate r (axis of rotational
symmetry at » = 0!) according to the law

B = B[l + (/a)’]™.

Here B,, the magnetic flux density at the axis, and
d, the “range radius,” are related to each other by
an equation which results, in the process of finding
the equilibrium solution, from identifying the energy
and stress density as a gravitational source density
(“gravitating mass”)®:

By = 2¢/Qt = 6.96 X 10*(G-cm).

The physical significance of @ is discussed later in
this paper (Sec. IT). For a magnetic flux B, ~ 10° G,
of the order of the polar values observed in the most
strongly magnetic stars, @ is about one million times
the diameter of the earth’s orbit about the sun. The
time unit for the static magnetic universe is

a/c = 2.32 X 10'(G/B,) sec.

For an axis magnetic flux B, ~ 10° G, a/c is about
75 years.

Associated with the equilibrium magnetic field
distribution is a well-determined geometry, whose
symmetry is also that of a whole cylinder. The field
distribution together with its associated geometry
is denoted here for brevity as a ‘“magnetic universe.”
The magnetic field configuration has the following
remarkable property: Although a suitable New-
tonian analysis and that given by general relativity
yield identically the same equilibrium configuration,
the conclusions as to stability are opposite. According
to a Newtonian analysis, the equilibrium is unstable
against gravitational collapse’; according to the full
general relativity analysis by various methods, it is
stable.*"” Though this striking difference is almost
certainly connected with the non-asymptotically-flat
geometry associated with the magnetic universe
according to general relativity,* the situation cannot
be said to have been fully clarified. Therefore it is
of interest to examine the gravitational field asso-
ciated with the bundle of magnetic field energy as
a step toward what one can hope will eventually
be a full illumination of the reason for the difference.
In principle, the geodesics, or tracks of electrically
neutral test particles moving in the given gravita-
tional field, tell all that one can know about the

& Reference 3, Eq. (8).

¢ This was demonstrated by an argument of J. A. Wheeler
in Relativity, Groups and Topology (Ref. 1) following some
early discussion with one of us concerning the magnetic
universe.

7K. 8. Thorne, Phys. Rev. 139, B244 (1965).
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geometry associated with this field. To analyze these
geodesics is the object of this paper.

The results of the investigation are easily summa-
rized. In broad survey, one can say that there s no
escape from the gravitational atiraction of the parallel
bundle of magnetic field energy. The gravitational
attraction here falls off more slowly with distance
than in the case of a spherically symmetric center
of attraction (Schwarzschild solution). One is re-
minded of how the electrical attraction of an infinite
line charge falls off with distance to one power
lower than does the electrical attraction of a point
charge. As a consequence of this reach of the gravita-
tional field to great distances, a particle with an
angular momentum of any nonzero value whatsoever
is necessarily bound to orbit periodically around the
axis of symmetry an infinite number of times. This
behavior is in contrast to that of a particle of a
given velocity passing a spherically symmetric center
of attraction at a distance b. In that case, when b
exceeds a critical limit, dependent upon velocity,
the particle escapes on a trajectory which asymp-
totically approaches a straight line. It does not
execute periodic turns. But n the case of the magnetic
universe, a particle with a nonzero angular momentum
18 never able to get away on an asymptotically straight
trajectory.

The slow falloff of the gravitational field with
distance is manifest also in another simple and inter-
esting consequence. Consider a particle traveling in
a circular orbit about the axis of symmetry. When
the orbit is small, it lies in the region where the
effective potential of the attraction follows the
harmonic oscillator law. The ecircular motion is
characterized by a certain circular frequency w.
This frequency is fully specified by the axis flux
density (or total flux, or range radius). It is v2 in
magnetic universe units or in standard units

w = (30'B./c = 6.09 X 107%(B,/G) rad/sec.

The associated period, 2r/0 = V2r in magnetic
universe units, equals 1.032 X 10'® (G/B,) sec in
ordinary units. (When B, ~ 10° G, this is about
327 years.) The velocity v required for motion in
an orbit of coordinate radius r increases for small r
according to the law v = wr. For large orbits, the
velocity needed to balance the attraction increases
even more rapidly with r, and reaches at

P = Pstraddle — 1/‘/g

T = Tatraddle — 4.02 X 1024(G/B0) cm

a limit which cannot be surpassed: the speed of light.
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There is no possibility for a neutral test particle to
move tn g circular orbit of radius r greater than 7,.:aad1.-
Only zero-resi-mass particles may orbit circularly or
helically af the radius r = 7,4cnddle-

The period of circular motion depends only on
the radius and decreases steadily as one takes circles
closer and closer to the critical circle (i.e., to the
orbit which is allowed only for light). The physical
time period required by light to traverse this critical
circular orbit is V3#/2 in magnetic universe units or

13, 8 _ 1,5, 8:96 X107 14(C_}_ )
§V8r o = §V8r 3 g, = 631 X 10¥{7) sec.
With B, = 10° G, of the order of the polar values

observed in the magnetically strongest stars, the
time for light to circumnavigate the magnetic uni-
verse at the eritical radius comes out nearly exactly
200 years.

The quantity 7,¢-aqa1e measures the pulling power
of the long-range gravitational attraction in a more
general sense: Every orbit which is not circular
(or helical with r = 7,4;00210) @nd which is not a
straight line parallel to the z axis must lie at least
partially within 7, 4raaq1e-

In addition to displaying so clearly the slow falloff
of the gravitational field with distance, the geodesics
also establish the ‘“‘completeness,” in the mathe-
matical sense, of the geometry associated with this
gravitational field. Modern developments in differen-
tial geometry have raised interest in the question
of “completeness’”’ for any given Riemannian mani-
fold. Kundt,® following earlier more abstract dis-
cussions of Avez® and Lichnerowicz,'® has suggested
four types of completeness relevant to physies in
the sense of determining whether or not “news can
enter or leave’’ the space-time. The most restrictive
type, g completeness, requires that all geodesics
(considered as one-dimensional submanifolds) are
either closed or of infinite length in both directions
(doubly infinite). The remaining types—y,, g., and
g. completeness—are less restrictive classes, referring
to space~times with doubly infinite lightlike, time-
like, and spacelike geodesics, respectively; the light-
like geodesics are described with the help of an
affine parameter such as the coordinate time ¢.

To determine g, or g; completeness, we need only
investigate geodesics lying in a meridian plane, in
short ‘“meridian geodesics,” in that these are the
cases in which the largest range is attained. In these

8 W. Kundt, Z. Physik 172, 488 (1963).

9 A. Avez, Compt. Rend. 240, 485 (1955).

10 A, Lichnerowicz, Théories relativistes de la gravitation
et de U électromagn étisme, p. 126, (Masson, Paris, 1955).
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cases the angular momentum about the symmetry
axis is zero. The explicit integration yields, in the
case of timelike orbits of this type, the time as a
first-kind elliptic integral of the radial variable. Just
as with the simple pendulum, the time goes to
infinity as the radial variable oscillates back and
forth progressively. For meridianal lightlike orbits
the situation is even simpler. The increment in
coordinate time is equal always to the absolute
value of the increment in the radial variable (in
our units, in which the light velocity equals unity).
Thus the duration of all orbits is infinite—no news
can enter or leave the magnetic universe—or the
space—time is complete.

The details of the analysis of equations and con-
stants of motion appear in the following section.
The equations of motion are obtained via the Hamil-
ton—Jacobi formalism. The formalism shows partic-
ularly simply how the invariances of the metric with
respect to shifts in time ¢, in the coordinate z parallel
to the symmetry axis, and in the azimuthal angle ¢
are responsible for the existence of a conserved
energy, z-component linear momentum, and angular
momentum, respectively. In the Appendix, the com-
plete integrals of the equations of motion are ob-
tained in the form of elliptic integrals.

II. GENERAL MATHEMATICAL ANALYSIS
1I.1 Geometry and Magnetic Properties of the Static
Magnetic Universe

The geometry of the cylindrical magnetic universe
is given by
do® = (1 + p°)d+* — dp* — d¢°)
— QA+ de’. (D)
Here the coordinates have been made dimensionless
through the introduction of an appropriate unit of

length for which we choose the range radius @ of
the magnetic universe®; thus,

(c-time) T
coordinate for (translation parallel to = alph
symmetry axis)

(radius) p

The associated Newtonian gravitational potential
for the metric is

¢=%1ng44=ln(1+pz)

and the range radius r = @ or p = 1 corresponds
to the place where the “acceleration of gravity,”
dy/dp = 2p/(1 4+ p°), is a maximum. (There is
an analogy here with the gravitational definition
of the radius of the earth.)
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That the length @ plays a role as an “effective
radius” in several other respects is seen as follows:
We have," in terms of the central value of the
magnetic field B,,

Bia = (f/7G)}* = f* X 1.963
X 10** (flux density units X cm)

(f = 1 for rationalized units, f = 4 for unrationalized
units) or

a = 2¢/G*B, = (6.96 X 10**/B,) cm (B, in G).

The integral of the magnetic mass density over the
equilibrium distribution'* endows the equation for
Bya with a simple physical meaning. Realizing that
the energy or stress density at the axis equals B}/2f,
we have

area of range radius circle
light velocity squared

@’ B2/2fc* = ¢’/2G = total magnetic mass
6.738 X 10°" g/cm.

Thus @ plays the role of an effective radtus for the
magnetic-mass distribution.

A second equation, relating the three charac-
terizing quantities B,, @, and the total flux &, is
obtained by integrating the flux density over the
entire space. One finds'® & = #a°B, Here again
we see @ playing the role of an “effective radius,”

(axis energy density) X

i

]

this time for the flux distribution. One can then .

express any two of the three quantities in terms
of the third with only universal physical constants
appearing. For instance, we have B,® = fc¢*/G or

& = 1.522 X 10°(G/B,) Mx.

The length unit is connected with the total flux &
through the relation

d = ®G*/2rc® = 4.56 X 107*° & cm
(® in Gaussian units = maxwells).

I1.2 Constants of Motion and the Radial First
Integral by Hamilton-Jacobi Theory

We originally determined the geodesics and con-
stants of motion for the geometry [Eq. (1)] and
related results by solving the usual geodesic equa-
tions of motion. However, J. A. Wheeler pointed out

1 Reference 3, Eq. (8).

13 Reference 4, Sec. 1.3, last equation; if Ref. 3, Eq. (19),
is used instead, the extra factor 4 occurs because the inte-
grated local Lorentz-frame energy densities have been used
instead of the integrated ‘‘conserved” magnetic energy
density.

13 Reference 3, Eq. (18).
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that one ecan arrive at the same results more elegantly
by the Hamilton-Jacobi method.’* More descrip-
tively perhaps, this may be called the method of
“constructive interference of ideal wave trains.”
Each “wave” is characterized by a phase propor-
tional to 8§ = S(r, p, {, ¢; E, P, L).

This phase depends upon position and time and
in addition upon constants of integration (&, P, L),
which, as we shall see, can be variously interpreted
as energy, z-component linear momentum, and an-
gular momentum or as frequency, z-component wave-
number, and azimuthal index number. [An additive
constant A(E, P, L) in S is always allowed because
the equation for the phase—the Hamilton—Jacobi
equation—involves only the derivatives of the phase
with respect to the coordinates and not the phase
itself.]

To determine the motion explicitly involves two
stages. Stage 1: We have to determine S as a function
of space, time, and the constants of motion. Stage 2:
We have to determine the explicit functional forms
of the first integrals (i.e., relations between the con-
stants of motion and the coordinates and their first
time derivatives) so that by quadratures alone p,
¢, and ¢ may be determined as functions of 7
(the “‘orbit”’), or p and ¢ as functions of ¢ (the
“trajectory’’).

In this section we concern ourselves with the first
stage. In Sec. A of the Appendix, we shall see
how the second stage is accomplished by an in-
teresting equivalent of the Jacobi procedure to be
found in Wheeler and Power.'*

We turn then to the determination of the function
S. As behooves a function which is, after all, the
phase in a wave motion in the limit of short wave-
length, S satisfies the Hamilton—Jacobi equation for
a particle of rest mass 3,

(momentum)® — (energy/c)® + (Mc)® = 0; )

or
—g°%(08/82°)(88/92") + (Mc)* = 0.

In the present case we use such units, and a test
particle of such a mass, that in our coordinates the
constant Me¢ can be replaced by unity or zero; thus

oo
+a+(B) +e=0, @

“ L. D. Landau and E. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1962) 2d ed., p. 285; K. Power and J. A.
Wheeler, Rev. Mod. Phys. 29, 480 (1957), Appendix.
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where ¢ = +1, 0 for timelike and lightlike orbits,
respectively.

We look for a solution by the method of separation
of variables. Here S is expressed as the sum of
four terms, each depending upon only one of the
four coordinates. The absence of any explicit depend-
ence upon 7, {, and ¢ in Eq. (3) then says that
98/dr, a8/3¢, and 9S/9¢ are all constants. Thus
one has

§=[ROd+Pr+Is—Er. @)
Here (see Appendix, Sec. A) P is a measure of the
linear momentum; L is a measure of the angular
momentum, in each case parallel to the symmetry
axis; and E is a measure of the energy. In terms
of these constants of integration, the Hamilton—
Jacobi equation (3) yields for the measure of radial
momentum

R(p) = [B' = P* — (1 + )'L*/0* — (1 + o).
@
I1.3 Bounds on the Radial Motion

Most of the significant features of the motion
follow at once from Eq. (4):

First, the radial motion depends upon the energy
factor E and the momentum factor P only in the
combination U* = E* — P?. Therefore it is appro-
priate to call U the “transverse energy factor” and
write

R(p) = [U* — (1 + p)'L%/p* — 1 + o)L (@)

We have U? = 0 only for a photon traveling parallel
to the ¢ axis, and U > 1 for every nonzero rest
mass particle, where U? = 1 only when the particle
is moving parallel to the { axis (actually, as we shall
see, on the { axis). For circular or helical motion
about the symmetry axis, the radius p is a constant
determined by setting R(p) = 0. Motion in a meri-
dian plane is given by setting L = (. These two
special classes of orbits—helical and meridian plane
—intersect in the limiting case of motion parallel
to the ¢ axis; this can occur only if the particle
happens to be initially directed parallel to the { axis
at the distance

po = [(U/d) — 11%.

The only possible value of p, for a nonzero rest mass
particle is zero. For a zero rest mass particle U/é*
is indeterminate and parallel motion at any distance
from the axis can occur.

Second, in a general orbit, all values of the radius
vector p satisfy the inequality
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p < U/ — 114

where the upper limit for p is attained only in a
meridian plane orbit (L = 0) at the turning point
po. Thus when there is no angular momentum
(L = 0), and we are not dealing with a zero rest
mass particle, the radial coordinate oscillates through
zero out to the value

po = (U — 1)’-

For a zero rest mass particle traveling in a meridian
plane there are no turning points. All such tracks
are ‘‘straight”’ as viewed in the canonical coordinate
system. This is a peculiar simplification in the de-
scription of motions due to the use of canonical
coordinates. In this connection Thorne’, who has
independently discussed certain special cases of the
geodesics which we have here considered quite gen-
erally, has made the following interesting remarks:

“The only geodesic of constant (p, ¢) is the null
geodesic { = r.* It is strange that, although a
photon moving in the plane perpendicular to the
axis of symmetry (¢ = constant) is strongly deflected
by the mass inside its orbit, a photon moving parallel
to the axis of symmetry (p, ¢ constant) is not de-
flected at all.”

To make one feel more comfortable about this
apparent paradox Thorne then argues essentially
as follows: The static magnetic universe is indeed
invariant under translations by a given A{ along
the ¢ direction. But such invariant translations mean
translating the universe at every value of p by
(1 + p°) times the proper distance of the translation
on the symmetry axis [because g;r = (1 + 0%’
Hence an invariant translation of the static magnetic
universe ‘“is more like a rotation of Euclidean space
than like a translation of it; and ¢ is more like an
angular coordinate of Euclidean space than like a
rectilinear coordinate. Just as it requires mass to
“deflect a photon into circular motion in Euclidean
space, so it takes mass to ‘deflect’ one into motion
along a {-coordinate line in Melvin’s universe. ‘Un-
deflected motion’ would correspond to some path
other than ¢ = constant.”

Third, when there is angular momentum of given
amount L, the minimum allowable value for U®
equals the minimum value of the positive-definite
quantity

V(o) = (1 + p)'L*/p’ + (1 + p°)°.

* Here Thorne’s statement is not quite literally correct.
Possible non-null geodesics parallel to the symmetry axis
are of course, those on the axis itself—with arbitrary energy
and momentum (U = 1),
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When U? has its minimum value, R(p) = 0 and
there is no radial oscillation, the particle moves in
a circular orbit of a certain radius, p = p,. Here
pr, is that value of p which minimizes V*(o®). Cal-
culating dV*/dp®, and annulling this derivative, one
finds an equation which is cubic in p7:

8pz + Bp1 + pr, — 1 + 2Lz = 0. (5)

Rather than try to solve for p? for a specified L,
it is easier to calculate L for a given p;; thus we have

17 = 2epy,
(1 + Pgi)z(l - 3PZI’.) ! (6)
ge, = Lt pn)'d = pp),

1 — 3pz

Clearly, physically acceptable values of p, lie only
between 0 and 1/v3, the latter value occurring only
for a zero rest mass particle.

When U? is larger than UZ;, = V3i;,, the particle
has turning points p, and p, which siraddle p.. That
this is so may be seen simply from the following
argument: Writing p*> = z, we have

Unin = [P(®)/2]min = P(zs)/72
[Plz) = 1+ 2)'L* + el +2)). (D)

We have only to verify that x; lies between the
roots of P(z)/z = U’ for any value of U® larger
than UZ,,. The polynomial P(z) and all its deriva-
tives are positive-definite in the physically acceptable
domain p > 0; the graph of P(x) vs z is then neces-
sarily concave upward and increasing with increasing
z. The intersections of P(x) with the straight line
U’z for U > UZ,, necessarily lie on both sides
of the point of tangency of P(z) with U’z; but this
point of tangency occurs for z = z,, U? = UZ,,
as is evident from comparing the minimum condition

xLP'(:I:L) - P(xz,) =0
and the tangency condition
P(x) = U’z = P'(2)z.

The largest permissible radius for a circular orbit,
expressed in the present units, is p, = 1/V3, and
this is the critical “straddle” radius for all orbits.
We see this by referring back to Eq. (5) and noting
that the largest value of p, that ean oceur for various
values of the parameter 2¢/L* is an upper bound
for the inner apse of any orbit. (The smallest value
of pr is a lower bound for the outer apse.) The
largest value of p, occurs for minimum 2¢/L*; ¢/L*
has its minimum value zero for a light track. We
then find for the roots of Eq. (5), 1/v3, —1, —1,
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of which the only physically meaningful root is the
first: pzmee = 1/V3. Thus we have the remarkable
result that the circular helical geodesics for light, which
occur at the critical radius p = 1/V3 (¢ = In $), play
a unique limiting role: No matier what the angular
momentum L or { component of linear momentum
(B* — UMY of any particle—whether of zero or non-
zero rest mass—this particle must ‘“fall”’ in its orbit
to within the critical radius (except when L = U = 0).

II.4 Limiting Values for Orbital Velocity and
Period of Motion

For a circular orbit of radius p small compared
with 1/v3, the denominator in Eq. (6) approaches
unity. The angular momentum approaches

L =2 22 (particle of nonzero rest mass!).

From Eq. (4’) we see that the energy squared then
approaches 1 -+ 2p; (e = 1). Thus the orbital
velocity approaches v2p;. The angular velocity,
given by the quotient of orbital velocity by radius,
approaches a constant value, as is to be expected
in a harmonic oscillator field. This value, @ = V2,
translated to physical units, gives the frequency
listed in Seec. I of this report.

We now consider the case of a circular orbit of
radius p not small compared with 1/v3. Upon sub-
stituting the expression for L* in Eq. (4’) we find
under the conditions for a ecircular orbit (B = 0,
P=0

Ulznin = Efnin = e[(l - Pi)/(l - 3Pi)](1 + Pi)zy
¢. = (1 + o212/ — AL

We see that though the angular momentum and
the energy required to maintain a nonzero rest mass
particle in a cireular orbit go to infinity as the radius
approaches the critical radius, the frequency or
period, which depends on the ratio of angular mo-
mentum to energy, remains finite. The period de-
pends only on the radius and decreases steadily as
one takes circles closer and closer to the critical
circle. There the period has its least value

Pleut .

— /o
2r [d = p)/21 = $V3r (coordinate time),

(1 + P2)2 p=1/V3
[a — g/2 ., .
2% A+ D s 1v3r (physical time).

The last value corresponds of course to the critical
circle circumference 2mp/(1 + p°) |,=1/vs being
traversed with the unit velocity of light.

The results concerning orbits going to infinity,
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mentioned in the discussion of ‘“‘completeness’” in
Sec. I, also follow from inspection of Eq. (4’). The
fact that the final quadrature, giving the time or
proper time as a function of radius vector, leads
to a simple elliptic integral, or a linear combination
of simple elliptic integrals (Appendix), enables one
to conclude that the magnetic universe is ‘‘complete”
with respect to its timelike and lightlike geodesics.
All orbits go on for an infinite timelike interval
(for mass points) or time (for light tracks), and
“no news can enter or leave the universe.”
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APPENDIX: DETAILS OF ORBITS

A. First Integrals of Motion by Method of Con~
structive Interference of Ideal Wave Trains
(Hamilton-Jacobi~Wheeler)

When the orbit is not circular or “straight” in
the canonical coordinates we are using, it is desirable
to spell out the equations for orbit or trajectory.
The motion of the particle is given by the condition
of “constructive interference” of wave trains with
values of the constants of integration which lie in
a small range

EtoE + dE, Pto P 4 dP, Lto L 4 dL.

This condition—that waves with nearly identical
values of E, P, and L will at all times have the same
value of the phase S—requires then

a8 _ 4 4 _
3 0: ar (68/9E) = 0,

or Sg + S.E’ppr + Sztfr + SE¢¢1 = 0,
98 _ 0. L ias/0P) =0,

or SPr + SPppr + SP{;’T + SP¢¢1' = 0’
a8 d 3
a = ar (88/8L) = 0,

or Si.+ SLpr + Sui‘f + SL¢¢r = 0;

where the subscripts in the equations on the right
indicate partial derivatives with respect to the sub-
seript quantities. These three linear equations give
pr ¢r, and ¢, directly; ultimately they determine
2, &, and ¢ as functions of = (the “orbit”); the last
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two of them give p and { as functions of ¢ (the
“trajectory’’). Equations (8) contain the equivalent
of the first integrals of the geodesic equations in the
usual pedestrian procedure. It is characteristic of
this elegant Jacobi-Wheeler approach that it should
replace the finding of first integrals of geodesic
differential equations (Lagrange’s equations) by
simple differentiation and solution of a system of
linear equations once the general form of the solu-~
tion of the Hamilton—-Jacobi equation has been
found. We obtain, from Eqgs. (3’) and (4) sub-
stituted in Eq. (8),

p- = —8&./Sz, = R(p)/E

= [U" — (1 + p'L*/s" — (1 + o)TE™, (89)
¢ = P/E, (8b)
¢, = LET'(1 + 5%/, (8c)

which specify the functional forms of the three first
integrals E, P, and L.

Equation (8b) considered as a conservation law
identifies P as a sort of ‘“{-component linear mo-
mentum,” with E representing an effective New-
tonian mass. Again Eq. (8c) expresses a conservation
law for a “{-component angular momentum L’ to
whose Newtonian form for a mass F it approximates
for small p (weak gravitational field). Finally Eq.
(8a) may be rewritten exactly

E = (e + E°p: + P* + 'L/, (9)
The last three terms in the parentheses represent
the square of the quantity: [E multiplied by the
physical orbital velocity (= v,,,)] as is readily

verified from Eqgs. (8b) and (8¢c) with the help of
the line element, Eq. (1). Thus Eq. (9) gives

Be™ = (e + (Be )P

= [(rest mass)® 4+ (momentum)?]*  (9a)

which is exactly the special relativity expression
if Ee™¥ represents the kinetic energy. For a unit
rest mass particle

E(l . 50) =~ {1 + [E(l - ‘//)vphys]z}il
EG—V’ & 1 + %[Ee_wvnhys]z
= rest mass 4 I[momentum]’/rest mass,

where the first approximation is the special rela-
tivistic approximation for weak fields, and the second
one is the Newtonian approximation involving the
limitation to small velocities. We note that for a
zero rest mass particle Eq. (9a) verifies the funda~-
mental principle: v, = 1.
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The three equations (8a)—(8c) are entirely equiv-
alent to those obtained by the standard Jacobi
integration method for a system of which every
coordinate but one is cyclic'®:

T = ng(p) do=E fR_l(P) dp, (10a)

t=[Relpydo =P [ R0 dp, (10b)

o= [Raprao =1 [LEEL Ry ap. 100

The standard Jacobi procedure lacks, however, the
intuitive picture that went into the derivation of
Eqgs. (8)—i.e., of a particle represented by a wave
packet formed by ‘‘constructive interference of ideal
wave trains.”

B. Classification of Types of Orbits. The Meridian
Plane Cases

It is clarifying to analyze all possible orbits in
two classes: (I) those for which the angular momen-
tum about the symmetry axis is zero (L = 0),
which we call “meridian-plane orbits,” and (II) the
general nonmeridian-plane orbits for which L = 0.

For meridian-plane light tracks, Eq. (8a) yields

p = poT + po (60 = U/E, p, constants).

This together with Eq. (8b) shows that all such
tracks are “straight” as viewed in the canonical
coordinate system. Projected either forward or back-
ward in time, any such geodesic is bound to intersect
the { axis, except in the one subcase where g, = 0.
In this instance the geodesic is forever parallel to
the ¢ axis. It is only in this subcase that the orbit
does not straddle the critical straddling radius p = 1/V3.

Meridian-plane orbits of particles with nonzero
rest mass satisfy the simplified equation

pr = [U" — (1 + p*)'1/E". (o

Any such orbit certainly intersects the ¢ axis and
has a turning point given by the positive root

1 See, e.g., Max Born, The Mechanics of the Atom (G. Bell

and Sons, London, 1927 or Frederick Ungar Publishing Com-
pany, New York, 1960), p. 41.
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(U - ]-)i = po.

Integrated a second time, Eq. (11) gives p as &
Jacobi elliptic function of the time

p=pcnar o =2U/E* = 2(1 + p5)/E*
with the modulus
k= [(U - 1)/2UT = p[200 + p0)]"

and period 4K(k), where K(k) is the complete
elliptic integral of the first kind.

(12)

C. Solutions for General Orbits and Trajectories

The orbit and trajectory of a particle from Egs.
(102) and (10e¢) is given by

_E dz
TT3L )., (@ — oG + Az + Bz + O)F

(mo = Pg):

(13)
_ é T (1 + p2)4
¢ = E_/; p2 dT
(14 2)dz
— z)(&® + A2’ + Bz + O))}

_1 f’" (1+2)* do
2 Jour 2l—(1+2)" = (/L)1 +2) s +(U*/L)a]* !

(14)

- % j;: z[(zo

1
xo’

4 xo)2+2—

.

L+

U2(2 + xo)

L*(1 + z,)? T,
1

= xo,

B =

where the initial conditions at r =
(an apse) have been inserted.

If L = 0, Eq. (13) reduces to the simple elliptic
integral integrated in Part B of this Appendix.

For L # 0, = =(p°) is still an elliptic integral
of the first kind, whereas ¢(o°) is a linear combination
of first- and third-kind elliptic integrals. We omit
here a detailed analysis which brings out once again
the existence of the maximum straddling circle.
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The eigenvalue density, the two-, and the three-point correlation functions for the ensemble of
real quaternion matrices are calculated. The forms suggest a generalization for the n-point correlation
function. The probability that no eigenvalues lie inside a circle of radius r around the origin is also
calculated for the ensemble of real quaternion matrices as well as for that of complex matrices. Upper
and lower bounding functions for the last probability density are given.

ATRIX ensembles have been studied by
several authors in order to describe large
systems with unknown Hamiltonians. The aim is
to obtain a knowledge of the types of restrictions
which arise from the most general invariance of the
physical problem. Besides these, the matrix elements
are considered random variables. The Hamiltonians
of physical systems are Hermitian, and depending
on the time-reversal properties, can be divided
into three classes, i.e., complex Hermitian, real
symmetric, and self-dual quaternion matrices. These
have been studied by many authors.' A more
general problem, that of non-Hermitian matrices,
has been studied by Ginibre,® who has been able
to obtain the joint probability density of the eigen-
values of N X N matrices, in each of the three cases.
In case of complex matrices, correlation functions
for the eigenvalues have been extracted® from the
joint probability density, and the limit N — «
taken. In this communication we have done the
same for the case of quaternion matrices. The
correlation functions up to the third order are
explicitly obtained, and the forms suggest an ex-
pression for the general nth-order correlation
function. One can also obtain an expression for the
probability of there being no eigenvalues in a circle
of radius r with the origin as center. A set of lower
and upper bounds for this expression is found.

I

Every N X N matrix formed out of real qua-
ternians can be considered as a 2N X 2N matrix
of complex numbers.® The eigenvalues of such
matrices occur in complex conjugate pairs (z;, 2%).
The joint probability density of the eigenvalues

1 The relevant articles have been collected in the reprint
volume “Statistical Properties of Spectra: Fluctuations”
edited by C. E. Porter (Academic Press Inc., New York, to
be published). :

2 J, Ginibre, J. Math. Phys. 6, 440 (1965).

3 C. Chevalley, Theory of Lie Groups (Princeton University
Press, Princeton, New Jersey, 1946), pp. 16-18.

21, 23, *+ , 2y I8 given by®

Py(zi, -++ ,2) H dz; dy:

~Kep (= Zlel) T la— ol — 24
Frt 15i<isN
. ﬁ; l2; — 2%® dz; dy., (1.1)
where
k=N ][ er@i—- DY, 12

i=1

In order to obtain the correlation functions we
first obtain a functional integral,

PN(1+a)=f'--fPN(z,,---

’ zN)

X INI 1 + afz))) dx; dy,.

t=1

(1.3)

The correlation functions can then be obtained
by taking the functional derivatives of py(1 + a)
around a(z) = 0.*

We make use of the identity

N
H (zF —2) le; — zi|2' Izc - zﬂz
=]l 18i<iSN
1 1 cee 1 1
2 ¥ 2 zx
= . 1.4
2 2 .. 2 2%’ 14
ng—l z,sz—l e Z?VN_l z*?vN_l

The integral in Eq. (1.3) consists of the above
determinant multiplied by the product
N
ITe """ — 29I + a(z)].
fm]
Noting that one variable occurs in two columns

4+ F. J. Dyson, J. Math. Phys. 3, 166 (1962); also included
in Ref. 1.
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only; we can use standard methods® to express the
integral as a Pfaffian. Before doing this one replaces,
in the determinant,

2l+l

2 by busa(2) = (21!')“ m (1.5)
and
& by bule) = @m Z k,c,z*"‘ (1.6)

This changes the value of the determinant by

N

II {2r-(2j — D1}

i=1

and we get

it +a) = 4 [ o [{IT 0+ age
X ez, ~ 2%) da, dy,}

X det [e) b)) @
= {det [f,,]7 T, (1.8)
where
fu = [[ ' — 90 + ae)]
X [b2)b,(*) — bi(Dbi(e")] dxdy. (1.9
We notice that
fr(@ = 0) = frosrmmaa(a = 0) = 0 (1.10)
and
f2€.2k+1(a =0) = —fzkﬂ.z;(a =0) = 54 1.1y
Thus
pr(l) = {det [fua = O} = 1. (1.12)

The functional py(1 + @) can now be written as
a Pfaffian which can be expanded into smaller
Pfaffians,

ev(l + @)

. . . 3
— {det [ }\ss 8 + V‘,J } ,
=0 — ¥y Meii £,im0,0ve N=1

(1.13)
where A, g, and » are small terms:

o 21 2t
:' f f (z Z*)G(Z) ZO Zo kk' 2 1
X (" — c.c.) dx dy, (1.14)

s M. L. Mehta, Nucl Phys. 18, 395 (1960), Appendix I;
also included in Ref. 1 » SPPE
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2%1 1

= _1___ ® ® —isl* K
i = on L, f.f (e — 2%a(2) § %1 (27 + DI
X (z”"z*’”” — c.c.) dz dy, (1.15)
2'+1 #27+L
(21’ T l)' G 1)'( 2 c.c.) dr dy.
(1.16)
We can now expand py(l + a) (see Appendix A),
N1 vei|¥
pm(l+a) =1+ 3 i
=0 B—— 0
0 Vigis liz"s Viiis
+ l = Vi 0 TViain Piais
2' $3Eg=0
e Aia!': Vieiy 0 Vigis
TFiis Fiuis TVisis O
¥ . . 3
+"'+_1'i Z {det [)\“"3 V‘n'ﬁ] }
N i iaevein=0
Vigia Bisig-a,B=1,ere,
+ - 117

II.

The one-level correlation function (i.e., the eigen-
value density) can be obtained by differentiating
px(1 + a) functionally with respect to a(z),

_ |8
Rl(z) - [6&(3} PN(]- + a)]a-o (2.1)
s 1o g0t
=< . 2.2
6@ S|, 2.2)
Taking the limit N — =,
1 w29 1
RG) =5 2 D h G I
X @2 — e.e)e (e ~ *) (2.3)
e £ 1 &
2r° (@~ 2% ; é zktp(,_!_a)
X (2 — ) (24)
= & e — 2)o(e, 2 @)
R STy Y menie _ da
= k-2 j;:; TR 2o

For the last step see Appendix B.
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The two-level correlation function ean be calcu-
lated from p(1 + a) = limy.. py(1 + a) by differ-
entiating twice,

2
Ry(z1, 2) = [m o(l + a) :Lw_ﬁ 2.9
0 Visie  Mais Visia
- & s 0 v v,
da(z,)dalz) 1,570 s o, 0 -
—Viis MBists “Visia 0
2.8

Carrying out the indicated functional differentiation
and the summation we get

Rz, 2) = (2m) %1 g — %) (2 — 2%)
0 (21, 2%)  d(z, 2) Pl 2h) }
|z, 2) 0 ¢, 20 ¢(2%,2%)
&z, 21) (22, 2%) 0 é(zs, 2%)
(2%, 20 o(2%, 2%) 9%, ) 0

Higher correlation functions are believed to be of
the form

2.9

N

° ,2,,) = H {(27")_13_;”"(2’:‘ - Z’f)}

t=1

t
-{det [‘ﬁ(zi: zi) ¢(2n 3’5):} } . (2‘10)
d’(zﬁ::; Z,») Q&(z":’: za;) L% it PRARSED

We have verified the form for n = 3 also.

Rﬂ(zl y *
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In this section we calculate the probability of
all the eigenvalues lying outside a circle of radius r.
We put

1+al) =0, for fg] <r

=1, for [z| >,

and express the result again as a pfaffian,

Enr®) = {(271')” IIei-D z}_l
X {det [giiliiimo,eenon-1}t,  (8.1)

where

- ~lzl? K [t 7 .C.
giin"‘ [/;">'e (z -2 )(zz c.C ) dx dy
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= 21r{P(j + 1, 7”2)5;'4»1.:' - T+ 1, 7'2)5:‘+1.i}y
8.3)

where I'(n, °) is an incomplete gamma function.
Thus

B = IL fuit), 3.4)
where
fdz) = e7ez) 3.5
and
[ xh
ez) = I§ i (3.6)
As 0 < f.(n) < 1, we get the inequalities
E.(") £ -++ < Ex(r)
SEy ()< L1 3.7
Also from
o - . 2i-1
AL, fun) 2 e -2 - 1):3@}
= Fy(r¥, 3.8)
we get
Eo(r) 2 «++ = Ex(r)Fs(r)
2 Eyi(rVFy(®) 2 -+ . (3.9)

A similar result can also be obtained for eigenvalue
of complex matrices. For the probability EL (+*) of
obtaining no eigenvalues in a circle of radius 7,
we have

N
EQ0N = lim [ e e(r).
N—® iw}

Bounding functions similar to (3.7) and (3.9)
can be written down.

(3.10)

ACKNOWLEDGMENT

We are thankful to Professor R. C. Majumdar
for his hospitality at the Physics Department.

APPENDIX A

A Pfaffian is the square root of an even-order
antisymmetric determinant

{det [i)i im1,eesm}
1
= = T Ebuibui 0 Scsie (A1)

where the summation is extended over all permu-
ta;tions 3.1, iz, Ty izn Of 1, 2, MRS 2’)’& With the
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restrictions 4, < 2y, €5 < %4y *** , Tap-1 < T2, and
the sign is plus or minus according as whether the
permutation

[7:1 7:2 iz»

1 2 .- 2n

is even or odd.

The expansion of a determinant with large
diagonal and small off-diagonal elements is very
well known. The coefficient of &° in the power
series expansion of

det [5” + 8(2;,'];.1-1,-..,,,

is the sum of all possible ¥ X % prinecipal sub-
determinants of [«;;] obtained by suppressing sym-
metrically (n — k) rows and columns of [«].
There is an analogous, but not so widely known,
expansion of a Pfaffian. To get the expansion of

: y 3 H
{det[ &\ 8 + &».,} } ,
—8i; — &y Buis $.im1,2,000n

with
Kis = —HWig

)\n = —N\ij (A2)

in powers of & we proceed in a similar manner. To
get &° one must have (n — k) factors in Eq. (A1)
equal to unity, while the remaining k factors
containing & can be regrouped into Pfaffians. Thus

{det|: €N d: + 51'.‘{'}*
— 0 — 8y &g
0

]
=1+82

Vii

Vs 0

Nii v

3
pove 2 ] }
+ o (43)

Whenever any two indices are equal, the corre-

Vi Mg
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sponding Pfaffian is identically zero. Hence one
can sum independently over the indices and replace
&* by &% /k!.

'APPENDIX B

In this paper we come across the function ¢(a, b)
of two complex variables, defined by

"’(“’b):() sz'l‘(z+3)

1=0 k=0

az)k<b2).+§ (b2>k( 2)-+}}

X {(2 2 2/ \2 - (B
Changing the summation index, and re-expressing

as the function of z = ab and y = b/a, we have

sa v = (0) = - ®2)

k=0

y- @b }Ik+i(x) )

where I,.3(z) is the modified Bessel function.
Using the expression

21{:%(‘”) = Ik—}(x) + I, (2),
We get
dé(a, b)/dz = 3@ — y L) + [4@)}

+ ¥y + vy (e, ).  (B3)
This, coupled with the fact that
#(a,b) -0 as z—0, (B4)
gives us
o0, = 30— ) [ dere i @)
As b — a, we have
#(a, b) = ¢"(b — a){1 + 3(b — a)* + ---}-  (B6)
As (b — a) > i,
#(a, b) = ¢*/(@a — b), (B7)
and as (b — a) > o=,
#(a, b) = (Gm)le' """ sign (b — a).  (BY)
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Case’s method is applied to multiregion problems in plane geometry. Half-range and “two-media”
orthogonality relations are used to obtain a system of coupled integral equations for the appropriate
expansion coefficients. The system is explicitly solved in a first-order approximation, which is valid
for wide regions. Numerical analysis and comparison with transport computer codes indicates that
such solutions are essentially exact for region thicknesses of five mean free paths or more.

I INTRODUCTION

ECENTLY Case’s method has been applied to

the solution of several problems defined in two

adjacent half-spaces.’ This paper is an extension of

that work to the analysis of multiregion problems.

In particular, three problems are considered: (1) The

slab with infinite reflectors; (2) the slab with finite
reflectors; and (3) the uniform, infinite lattice,

These problems (and indeed all multiregion prob-
lems) do not in general have exact solutions in closed
form. However, by making use of the orthogonality
relations recently developed for the one and two
half-space problems,’ a solution can be obtained
implicitly in the form of a system of integral equa-
tions for the discrete and continuum coefficients.
From this system an explicit first-order solution, valid
for ““wide regions,” is easily obtained. This technique
was first employed by Case in connection with the
bare multiplying slab.® Such solutions are generally
of much better accuracy than would be implied from
the assumptions invoked to obtain them. Numerical
analysis, in fact, indicates that they are nearly exact
in regions which are more than five mean free paths
thick.

The multiregion problem ig the most general
problem that arises in the context of the one-speed,
one-dimensional theory and therefore represents, in
8 sense, & culmination of the earlier work on one-
and two-region problems, Aside from this academic
motivation, there are several additional reasons for
considering these problems:

* Based in part upon a Ph.D. thesis at the University of
Michigan.

+ Operated by the General Electric Company for the U. S.
Atomic Energy Commission, Contract No. W-31-109-Eng-52,
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Ann. Phys. (N. Y.) 30, 411 (1964).
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Theory, Michigan Memorial Phoenix Project Report, The
University of Michigan (1961).

1. A similar set of multiregion problems has been
treated by Kuzell,* also using Case’s method. His
approach was based upon the use of full range inte~
gral relations (not orthogonality relations) between
the normal modes of different regions. This led to
extremely complicated solutions in terms of multiple
singular integrals which were not readily amenable
to approximation in explicit form. The formalism
presented here does not suffer from that disadvan-
tage.

2. Although some selected numerical information
has been obtained by Mitsis regarding the accuracy
of the low-order approximate solutions in & bare
slab problem,’ there has not been a detailed investi-
gation of the range of parameters for which these
approximate representations of the neutron distribu-~
tion function are valid. In the present analysis the
accuracy of the first- (lowest-) order solution for
the neutron distribution is examined by comparison
with a numerical integration of the transport equa-
tion.

3. A practical motivation exists in that these
analytical methods may lead to an accurate calcula-
tion of certain reactor parameters. For example,
quantities, such as generalized escape probabilities,
flux depression factors, disadvantage factors, and
the like can obviously be obtained in explicit form
from the solution of these problems. Furthermore,
this analysis can be used to advantage in treating
large homogeneous regions for which numerical in~
tegration methods break down because of mesh
spacing limitations. Finally, a possible application
exists in constructing an improved asymptotic dif-
fusion theory, in the manner of Selengut’ and
Pomraning and Clark,” by using only the discrete

¢+ A. Kuszell, Critical Problems for Multilayer Slab Systems,
Polish Academy of Sciences, Institute of Nuclear Research,
Report No. 206/1X, Warsaw (1961).

8 3. J. Mitsis, Nucl. Sci. Eng. 17, 55 (1963).

s D. 8. Selengut, Trans. Am. Nucl. Soc. 5, 40 (1962).

7 G. C. Pomraning and M. Clark, Jr., Nuel. Sci. Eng. 17,
227 (1963).
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portion of the solution in the wide-region approxi-
mation.

II. ELEMENTARY SOLUTIONS AND
ORTHOGONALITY RELATIONS

The homogeneous one-speed neutron transport
equation in plane geometry for isotropic scattering
may be written as

adf(x, )

+ven =% [ wewmaw o

where ¢(x, ) is the angular density measured in
units of mean free paths, C is the mean number of
secondaries per collision and is assumed to be con-
stant, and the arguments have their usual meaning.
The general solution of this equation is the following®:

Uz, 1) = Gosdor(w)e ™™ + ao-do_(u)e™""

+ f 1 AW & (@)

where a,. and A{y) are arbitrary expansion coef-
ficients and ¢,.(x) and ¢,(u) are angular eigenfunc-
tions given by

dos() = Cno/2(vo F 1), 3
&) = (Ov/2)[P/(v — w)] + N) (v — ). (4)

The eigenvalue v, is the positive root of the equation

- Cv " du_ _
A(v)—l—-zwly_“—o &)
and the function A(y) is defined as
C d -
) ~—1—~2ﬂpf_ly—_’i;z 1 — Cytanh™»  (6)

where P denotes the Cauchy principal value.

The functions ¢,.{u) and ¢,{u) are orthogonal
with respect to the weight function w(u) on the
interval 0 < u < 1, where

™
®

= 1 l ! d -1 C7l'/2
"l—zeXp[w o M_‘_fztan {;\‘(u)}]' ©

The following orthogonality and normalization
relations have been derived by Kuscer ef al.”:

w(w) = v — u),
v() = Cu/[2(1 — CY&5 — W)X (—u)],

and

X@)

Ji 6.0, () du = 2 =) (10)

g(Cy v)

8 K, M, Case, Ann. Phys. 9, 1 (1960).
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[ o6, u0te) s = 0, an
[ . ) dn = X (=300 (12)
[ #osdbus o) s = FGOP X9, (13)
[ ottt an = S2x-, a9

[ 606 nte) dn = G 6-,6/)60 + 0 X(=).
(15)

In Eq. (10) the function g(C, ») refers to the func-
tion defined by Case, DeHoffmann, and Placzek’:

g(C,») = [(1 — Cvtanh™ »)* + (xCv/2)°17".

In the ease of two adjacent media, where C = C,
on the right-hand side and C = C; on the left, one
distinguishes the angular eigenfunctions and other
quantities by the appropriate subscripts, e.g., ¢10. (1),
o1, (1), P20x (), ¢2,(1), according to their respective
values of C. In addition to the half-range orthogonality
relations indicated above, it has been shown by
Kuscer et al. that the functions ¢e:(n), ¢20-(u),
&1 (1), » > 0, and ¢,,(u), v < 0, are orthogonal with
respect to the weight function W{g) on the interval
—1 < g € 1 where

W(ﬂ) = I‘(ﬂ)(”m - I-‘)(Voz + ﬂ) (16)
and where
r(#) — {71(#)){2(“”)7 u> 0!
Ya() X 1(u), u<O0.
If we define
C(v) - { w »>0 and Qy(ﬂ) - {Qf’n(ﬂ): »>0
02, y <0 d’Zv(ﬂ'}) v < 0?
then the following “two-media” orthogonality

relations and some related integrals are obtained®:

! _ W) 8 — )
[ 262w du = =552, as)
[ $u0s, W) s = 0, (19)
[ 632,657 du = o, (20)

¢ K. M. Case, F. DeHoffmann, and G. Placzek, Introdue-
tion to the Theory of Neutron Diffusion (U. S. Government
Printing Office, 1963), Vol. 1.
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[} s (W) s = @21

[, #0-2.00W () du = 3CoC0M,

(Voz_vm) _
X (VQ2+3’) X( V()l)) (22)

[, $20:6)2.03W () du = 4CoC

x (yﬂl _ 1’02)

(V ) (Voz) ) (23)

[ #1010, WG) s = —GCo0?

X (o £ voex(Ever), (24)
[ s GO d = (1

X @osTF vo)x(vea), (25)

1
j; . ¢zo+(ﬂ)¢1o+(ﬂ)W(M) dp = “‘%01021’01”%2)((7’02); (26)

]

[ $10-Gso-GIW () dis = 3C,Coman(—ww), (@)

[ b o) a =~ @8)
f_ 11 G10+ (W () dp = %’i‘”‘ , (29)
[ 1 ®,(WW () dp = v(’;@ , (30)

where the x-function appearing in the above equa-
tions is defined by

x(2) = X,()X.(—2).
III. SLAB WITH INFINITE REFLECTORS

Consider the problem of a slab with a uniformly
distributed source adjoined by two symmetric in-
finite reflectors. Let ¢ = C, in the central region
and C = C, in the outer regions, where C,, C; < 1,
and, in general, Cy # C,.

@31

-a ta

Fia. 1. Coordinate system for the slab with infinite reflectors.
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The angular density satisfies the following equa-
tions:

w28 4y, )
= 3 ‘I’l(x: ”') dl“ 3 x> a, (32)
6;[/2(12, ﬂ) + ‘02(2:’ ”)
z%f_l Vo, W) d + 8, 0<z<a, (33)

where
6y (0, p) = (0, —p)

(reflection symmetry about the z = 0 plane),
@ Vi(a, 1) = (e, 1)
@) lim ¢y(z, 4) =0

oo

(interface continuity),
(boundedness).

In the usual manner®® we express the solution of

the problem in terms of ‘“elementary solutions’

(normal modes). A solution which obeys boundary
condition (3) is

iz, w) = ao¢1o+(#)3‘x/,“ + f A(V)tl);,(u)e_’/' dv,
(34

bo+¢2o+(lla)6~z/v" + bo—¢2o—(}‘) /7o
- f BO) 6" &+

;1/2(31, I‘)

S
e @9

where S/(1 — C,) is a particular solution. Upon

noting that ¢o. (—p) = ¢oz(p) and ¢,(—p) = o-,{u),
it follows from the symmetry condition that

bos = b = by, (36a)
BG») = B(—»). (36b)

Henece application of boundary condition (2) re-
sults in the eontinuity equation

v = [ BOT ) &+ [ 46k )

where

W) = BolbroaWe ™™ + daa- (W] + o
1 C,

1
— abios e = [ B0 b (39)
This is a “two-media” full-range expansion of the
funection y(u), the existence of which has been proven
in Ref. 1.
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In order to more conveniently apply the orthog-
onality relations given in Sec. II we invoke the fol-
lowing identity':

$a,() = (C2/C¢0,(w) + [(C: — C)/CL] 36 — u).

(39)
The continuity equation may then be written
bo[¢2o+(ﬂ)e-"/'" +- ¢2o—(ﬂ)ea/,"]
S - cl _ Cz —a/|
+ti-c, G, B(u)e " *H(w)
0
— aybros()e " = j; l B)e™* ¢o, (1) dv
! 02 —a/y
+ [ {A@ + z:TB@}e (1) d (40)
4] 1

where
1 0
H(w) { SES
0, n <0,

If we now multiply Eq. (40) by ¢ (&) W{u) and
integrate over all p we obtain, using Eqs. (20), (21),
(25), and (28),

_ 1 28, 2C—=Cy
bo - CgVozA {1 — 02 + Cl

X j; ' B(ﬂ)\‘?—ah(”ox - ﬂ)‘Yl(l‘) dﬂ} (41)

where
A = [(vos = vo)X(@or)e """ + (o3 + vor)x(—vos)e™"**].
(42)

Similarly, upon multiplying Eq. (40) by ¢104 (w) W (&)
and integrating over all u we obtain, using Egs.
(19), (21), (24), and (29),

€1 — C)a — D Xi(—ng(Cy, »)
Xo(—»)

bo¢20+(u)x(v02)e_"/'° '

A@) =

— 1
X 4| oo Ox(—ren)e*™ | — LS [ Blseroy, (g ) dut — L2B6), v > 0.
1 (] 1

~a/%o1

— Qoi0+ (X (or)e
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1
Go = & Cwor(wor + v02)x(vor)
X {2606”“”°’C'2"§2X("°2) — 1 3SC’2 * 2(010—1- =
1
X j; B(we™(voa + w)v2() dl‘}' (43)

Upon substitution of b, from Eq. (41), and after
much algebraic manipulation, @, may be written in
the form

g = {e_a/’°‘X(Ve2)[:2(CIC~ Cy
1
28

X fo B(u)e ™ (voa — p)vi(u) du + ‘f‘:@]

4 e.,,,,,x(_m)[zgclcj Cy)

X /; 1 B(we ™ oa + wmilw) dp — 7 _2_802]}

1
C1Vo1e—a/“ x7((1’01) A

(44

To obtain expressions for the continuum coef-
ficients, we first multiply Eq. (40) by ¢é:1,(u) W (),
» > 0, and integrate over all u. Using Egs. (23), (20),
(30), (19), and (18) we find

A(D) - 9“’”9(01, 1’) {boe_"/“' 02501 2 (Vm "l’oz)

W) LR p—— x(o2)
SVCl _ C‘ — C’2 1 .y }
oy T, B W) d
- %B(ﬂ): v >0 (45)
1
or, equivalently,
(46)

Finally, multiplying Eq. (40) by ¢.,(u)W(u), » < 0, and integrating over all x we obtain, with the aid of

the appropriate orthogonality relations,

alr C, —an.02 2 e
B() = : Igpg(v; . {b"e / 2; = (gjﬂ --v:;) *{vo2)
SVCz — (Cl
T30 - ¢y

(; Gl fa l B(we™"g2,() W () du}, y<0 (49

10 M. R. Mendelson, Ph.D. Thesis, The University of Michigan (1964).
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or alternately,

eﬂh(l - Cz)(l’:z - Vz)Xz(")g(Ca, v)
X,

B@) =

botbao+ (V)X(Voz)e_n/“ *
X 4] + bo¢2o—(V)X(_Voz)e¢h"

—a/¥o1

— Aopro+(P)x(¥or)e

Equations (36b), (41), (44), (46), and (48) form a
system of coupled equations for the coefficients g,
bo, A(@), » > 0, B(»), » > 0, and B(»), » < 0. In
particular, Eq. (48) is a Fredholm equation for
B(»), v < 0, which can be solved by Neumann itera-
tion if the resultant series is convergent, and which
then leads to the solution of the system for the re-
maining coefficients in corresponding orders of ap-
proximation.

It is obvious, however, that the solutions will
become enormously complicated as the order of
approximation increases. We shall therefore obtain
only “first’” order solutions in this paper, which cor-
respond to the retention of the first (integral-free)
term in the Neumann series for B(»), » < 0. Indeed
we go one step further in that we shall interpret this
approximation as corresponding physically to a wide
slab and therefore justify the neglect of the integral
term in Eq. (48) on the grounds that it makes a
small contribution for large a. In the same sense we
may also neglect the integral contributions in Eqgs.
(41) and (44), and the contributions of the last two
terms in Eq. (46). This decouples the system and
gives the following physically consistent first-order
approximation:

W _ 28
¢ (1 - Cz)CzVoz A’

a(()l) _ —2S[X(—V02)€ah" — x("w)e—alvu]
1- 02)011’01)((1’01)3_0/'“ A

(49)

y  (50)

where A is given by Eq. (42);
a-= Cl)(vlz)l - Vg)Xl("‘”)g(Cu V)f(")ea/,

Au)(ll) =

Xz('_V) !
v > 0, (51)
B(l)(v) = a- Cz)(l’gz - ?ﬁ;(")g(czy V)f(”)eah ,
vy <0, (52)
where

349
— 1 —a/u
_G = C, o B(n)ev _‘Y;(#) dp . v <0, (48)
bo¢zo+(V)X(Voz)e-‘/'”
) = | +bodao-()x(—ves)e™ ™" |. (53)

~obr0+@)xPor)e "

It should be pointed out that it is not necessary
to first obtain the exact solution in order to arrive
at the first-order approximation given above. The
‘“wide region” approximation can be invoked much
earlier, in the statement of the continuity equation.
In fact, the procedure followed here is completely
equivalent to ignoring the integral term in y(u),
Eq. (38), and then applying the orthogonality rela-
tions directly to the simplified continuity condition.
This is an advantage of the ‘“ wide region” interpreta-
tion of the first order approximation, as opposed to
other types of first-order approximations, in that it
greatly simplifies the manipulation. This simpler
method of attack will be followed in the next two
problems.

There are two interesting characteristics of the
first-order solution that should be pointed out:

(1) The first-order solution, or indeed any finite-
order solution, will not be continuous at the inter-

faces since the equation resulting from the continuity

condition was only approximately solved. The magni-
tude of this discontinuity, which will be small for
“wide regions,” is investigated in Sec. V1.

(2) When C, = C,, one sees that the discrete
coefficients and B’ (v), » < 0 as given by the first-
order solution are exact, while 4V’ (») is too large
by the quantity B’ (). Thus the solution is exact in
the inside region. This behavior is quite useful as a
check on the accuracy of the numerical analysis.

IV. SLAB WITH FINITE REFLECTORS

Consider the case of a slab with a uniformly dis-
tributed source (Fig. 2), adjoined by two finite sym-
metric reflectors. As before, C = C, in the central
region, € = C, in the outer regions, and C,, C; < 1.
The angular density in the region 0 < z < b satisfies
the equations
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AN

AN

1
o
1

AN

(o}
o

-b

F1g. 2. Coordinate system for the slab with finite reflectors.

—Q

p a'/’!(xi ”’) + ¢1(x, ”)
_G
=3 !//1(37; wdy', a<z<b (54
a‘/’z(‘v, ”) + 11/2(1:, #)
gz f Yoz, W)’ + 8, 0<z<a (55
with the following boundary conditions:
1) ¥5(0, 1) = ¥=(0, —u),
@ ¥i(e, 1) = ¥(a, p),
@) b, w) =0, pu<O.
The general solution is
U@, B) = Gosbros()e™"** + Go_dro-(n)e*=*
1
+ | AGSLWT B, a<z<b,  (50)

Yolz, p) = bo+¢2o+(ﬂ)3_z/'" + bo-¢zo-(ﬂ)e’/'°’
— [ Be) e

Upon applying boundary condition (3), we obtain

C. ) 0<z<a.
2

1
a) = [ A0 b, w>0,  (6D)
where
a(p) = —aosbro-(we""** — Go-pros ()™
C, s
. f AR s dv (39)

Equation (57) is a half-range expansion of the
function a(u). Hence expressions for the coefficients
appearing in this equation can be obtained by means

M. R. MENDELSON

of the half-range orthogonality relations given in
Sec. II. However, we first impose the wide-region
approximation, i.e., we assume that the term

¢
2

14

v+ p

makes a negligible contribution to a(x) if b is suf-
ficiently large. (This assumption must be checked
later for consistency.) Then, upon multiplying Eq.
(57) by ¢+ (Ww(u) and integrating over p from
0 to 1, we obtain

A( Ye dv

Gor = o XX(Y'L,,)) aa/res (59)
and similarly we find
A(=1)e” = —ap,e " X, (—)
X (1 — C)Cwarg(Cy, V) X:i(—vor), » > 0. (60)

Now consider the solution in region (2). The sym-

metry condition (1) gives
bo+ = bo_ é bo, B(V)

Boundary condition (2) results in the continuity
equation

Y(u) = f A(v)¢1.(u)e‘°" -+ f B(V)¢z.(/.¢)e'“” dv
(62)

= B(—v). (61)

where

Yw) =
X I:e(%-a)/'" X)f(’g“)) $10+(1) + P10- (l‘-)eah":l
+ bo[¢2o+(l‘)e_a/'" + ¢2o—(ﬂ)e¢/"']
—- /; ' B@)e *¢s,(n) dv

- ao_

~ [ 4090

_8
]."—Cz,

and where we have used Eqgs. (59) and (61).

In keeping with the wide-region approximation,
we ignore the two integral terms in ¢(u). Using the
“two-media” full-range orthogonality relations we
then easily find that

28X 1(—1’01)
(1 - Cz)C PoaX 1(”01))((1’01) A

% [ (gﬁ) _e.,,.,.]’ 64)

+ (63)

Gy =
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28

b, =
? (1 - Cz)CzVozx(—Voz) A

2(b=a)/ves __ Xl(—”m)x(—l’m)eah"
X I:e ( Xl("m)X(Vm) :]’ (65)
where
. a/ves __ X(Voz) ~a/vos
A= vm[e X(_Voz) ¢ :|
(2b—6) /P01 Xl V01)X( VOI) e
X |:e + X 1(V01)X(V01) :|
a/vos X(VOZ) —a/703
+ [ T e © ]
2b=a)/vor __ Xi(=ve)x(=701) arves
X [a Xoodxo) © ] (66)
_ eah( Cl)(l’gl — Vz)Xl(_V)
AQ@) = X,(—)
X g(Cl; V)f(”)’ v > 07 (67)
and
BG) = (L = )6k — ) 30
X g(Co, 9f@), »<0  (68)

where
f(v) = b, [¢20+ (V)X(Voz)e_ah" 4+ ¢20—(V)X( _ Voz)ea/n ,]

_ ao_l: (2b~a)/¥%o1 X‘Xv(lfl_’m)) ¢10+(V)X(Vo1)

+ ¢10_(v)x(—v01)e"/y°‘:l. (69)
Equations (59), (60), (61), (64), (65), (67), and (68)
comprise the first-order solution of this problem.
One can now readily check that the approximations
made in the expressions for a(u) and ¢ (u) were con-
sistent ones, i.e., the integral terms do indeed vanish
rapidly for large a and b.

The comments in the previous chapter about the
discontinuity of the solution at the interfaces apply
equally well here. There does not, however, appear
to be any special significance in the first-order solu-
tion when C, = (..

V. REPEATING INFINITE LATTICE

The last problem to be considered is that of a
repeating infinite lattice composed of alternating
source slabs and source-free slabs, with configuration
as shown in Fig. 3.

Because of symmetry we may confine our atten-
tion to a half-cell of the lattice, ie., 0 <z < a + id.
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F1q. 3. Coordinate system for a repeating infinite lattice.

The equations to be solved in this region are

p = B a‘pl(xy ”’)

+ Kbl(x: ﬂ)
g‘ b ) dw, a<z<®EL. (o)
a‘l’z(x’ ”’) + ¢2(x u)
_GC
=3 1[/2(x,u)du +8 0<z<a, (71)
where
(1) 102(0) l") = '1’2(05 _I~‘):
@ %l + a)/2, u] = Wl® + 0)/2, —4,
(3) 'Pl(a: I‘) = ‘/’2(‘1: M)-
Solutions are
Wiz, ) = ao+¢1o+(#)9_:h" + ao—‘f’lo—(ﬂ)eﬂm
+ [ Aeute @, (12
Vo, 1) = bosdbaos(w)e """ + bo_tpo—(w)e” "
— [ BOwe v+ R @)
Symmetry conditions (1) and (2) give
bos = bo- £ .bo; (74)
B@) = B(—), (75)
Goy = ao_e(b+a)/ro-, (76)
AQ@) = A(—r)e®*>”. @D

Using these relations in Egs. (72) and (73) and
applying the continuity condition (3), we obtain

W) = [ 460 + [ B v
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where

'ﬁ(ﬂ) = bo[¢20+(u)e"u/vu + ¢20—(ﬂ)ea/“’]
- ao+[¢1o+(u)6—a/“‘ -+ ¢10_(“)e—b/ro.]

- f AW d

~ [ Bowwe &+ 15 a9

As before we ignore the contribution of the two
integral terms to () in Eq. (79) in the case of wide
regions. Then, using the *“two-media’ orthogonality
relations, the first-order solution follows straight-
forwardly:

- 28
T AQ — C)Cavoax(—ve2)
—a/Vor __ ,~b/%e1 X(_Vm):l
X [6 ¢ X(Vm) ’ (80)
N 25
Go+ = A(l - Cz)CleX(Vm)
—a/vos M . p8/ves
X [e X(_Voz) ¢ ], (81)
where
=y a/vey X(¥02) -a/v..:|
a ml:e X("Voz) ¢
—a/vo1 X( VOI) -b/vn]
X l:e T ) X(Vm) ¢
a/vos X(Voz) g=o/"e
T Vozl: EE) X(—Voz) ]
—a/vor __ X(—Vm) ~b/ves
X [e X(Vm)j o “:" (82)
and
- o] e o Xy(—2)
AQ) =€ a CHve )X( =)
X g(Cla V)f(”): 4 > 0) (83)
_ el 2 2 &_(1’2
B(V) = ¢"’(1 Cz)(”oz ) Xl(V)
X g(CZy ”)f(v)) v < 0) (84}
where

1) = boldo+()x(oa)e™™""*" + bao-()x(—ror)e””*"]
~ o, [b10+ Mx(or)e™"** + bro_@)x(—ror)e " ].
(85)

One easily verifies that the first-order approxima-
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tion is consistent. With the usual comments about
continuity at the interfaces, we proceed to the
numerical analysis.

VI. NUMERICAL ANALYSIS

For calculational purposes we shall consider not
the angular density, but rather the neutron density,
obtained by integrating the previously derived solu-
tions over all y. Making use of the normalization
condition of the normal modes,® i.e.,

1
[san=1, an s @0
~1
as well as the appropriate symmetry conditions, we
find that the solutions of these problems may be put
into the following forms:

(1) the slab with infinite reflectors:

1
p@) = o™ + [ AGE b, (87)
)]
px) = 1 cosh z/vg,
1
—2 f B(~») cosh a/v dv;  (88)
(]
(2) the slab with finite reflectors:
pl(x) _ ao+e—z/vu + ao—ez/vox
1 1
+ f AR b+ [ A9 b, (89)
[} 0
pe() = _28_ + 2b, cosh /v,
1 - Cz
—2 ] B(—») cosh z/v dv;  (90)
[V}
(3) the uniform, infinite lattice:
pr() = aosfe7" @7
1 1
+ f A(V)e—z/v dv + f A(V)e—(b+a—z)/v dV, (91)
0 [}
S
pa{xr) = ———+ + 2b, cosh x /vy,
1-20C,
1
—2 f B(—v) coshafvdv  (92)
0

where the appropriate discrete and continuum coef-
ficients are given in the previous three sections.
These solutions have been programmed in the
FORTRAN language, originally for the IBM 7090
Computer at the University of Michigan, and later
for the Phileo 2000 Computer at the Knolls Atomic
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Power Laboratory. The various integrals were eval-
uated by means of Simpson’s rule, with 200 intervals
for 0 < » < 0.99 and 200 intervals for 0.99 < » < 1.0,
The very fine quadrature near » = 1 is necessary to
properly represent the function ¢(C, »). This funec-
tion, while vanishing at » 1, becomes nearly
singular as » approaches 1, for values of C near 0.°
The calculation of the integral terms was facilitated
by a table of X-functions, which was constructed
from an iterative solution of the integral equation
for Chandreskhar’s H-function.'® The parameters
used in the numerical analysis are shown in Table 1.

TasLE I. Parameters and ETC1 options used in numerical

evaluation.

Angles Mesh
Ci C: a d(Prob.2) d/2(Prob.3) (0 <pu < 1) points
0.01 0.99 5.0 5.0 5.0 8 1000
0.01 0.99 1.0 1.0 1.0 12 500
0.01 0.99 0.1 0.1 0.1 16 500
0.99 0.01 5.0 5.0 5.0 6 1000
0.99 0.01 1.0 1.0 1.0 10 500
0.99 0.01 0.1 0.1 0.1 14 500

As a comparative standard, we have used the ETC1
program'' which performs a numerical integration

353

of the transport equation by the double-Gaussian
quadrature method. This program has provision for
up to 18 angles on the range 0 < ¢ < 1 and as many
as 2000 spatial mesh points. Only the second two
problems, i.e., the slab with finite reflectors and the
lattice, were analyzed with the ETC1 program. The
first problem, the slab with infinite reflectors, was
not analyzed with a transport code because of the
great difficulty in obtaining highly accurate solu-
tions in infinite media. The angular and spatial
options used were the same for corresponding cases of
the two problems considered. These are shown in the
last two columns of Table I.

Tables II, III, IV, and V show the resultant
values of the neutron density for the two types of .
solutions as well as percent error, defined by

PCASE _— PETCL X 100.

percent error =
PETC1

Percent errors less than 0.01 are regarded as not
meaningful and are therefore not indicated.

It is noted that in the four problems for which
¢ wide-region’’ comparisons are made, i.e., regions
five and ten mean free paths thick, the first-order
solutions are essentially exact in comparison with the
ETC1 solutions. One exception to this is observed in

Tapre IT. Slab with finite reflectors. i = 0.01, C; = 0.99;a = d = 5.0, 1.0, 0.1, respectively.

z PCASE PETC1 % Error =z PCASE PETC1 % Error z PCASE PETC1 % Error
0 34.4729 34.4730 <0.01 0 3.98055 3.98056 —0.226 0 " 0.259611 0.37581 —30.912
1.0 33.4940 33.4941 <0.01 0.2 3.91276 3.92179 —0.230 0.02 0.256856 0.373132 —31.162
2.0 30.5255 30.5255 <0.01 0.4 3.70636 3.71546 —0.245 0.04 0.248362 0.364963 —31.949
3.0 25.4623 25.4624 <0.01 0.6 3.34994 3.35915 —0.274 0.06 0.233297 0.350519 —33.442
4.0 18.0635 18.0635 <0.01 0.8 2.81092 2.82045 —0.338 0.08 0.209475 0.328025 —36.141
5.0 6.65515 6.65514 <0.01 1.0 1.88856 1.89886 —0.542 0.10 0.165265 0.286303 —42.276
5.0 6.65497 6.65514 <0.01 1.0 1.90702 1.89886 +0.430 0.10 0.406634 0.286303 -+42.029
6.0 1.16268 1.16269 <0.01 1.2 1.12392 1.12006 0.345 0.12 0.351025 0.244212 43.738
7.0 0.304931 0.304941 <0.01 1.4 0.764690 0.762965 0.226 0.14 0.315063 0.219366 43.624
8.0 0.088226 0.088228 <0.01 1.6 0.542456 0.541787 0.123 0.16 0.286321 0.200094 43.093
9.0 0.026871 0.026869 <0.01 1.8 0.394061 0.393860 0.051 0.18 0.262140 0.184321 42.219

10.0  0.008454 0.008426 <0.331 2.0 0.290870 0.290545 0.112 0.20 0.241241 0.170958 41.111
Tapig II1. Slab with finite reflectors. C; = 0.99, Cs = 0.01;a = d = 5.0, 1.0, 0.1, respectively.

z PCASE PETC1 % Error =z PCASE PETC1 % Error =z PCABE perca %o Error
0 1.00979 1.00979 <0.01 0O 0.920314 0.918188 0.232 0 0.413014 0.308241 33.991
1.0 1.00956 1.00956 <0.01 0.2 0.91628% 0.913981 0.252 0.02 0.412007 0.306604 34.378
2.0 1.00848 1.00848 <0.01 0.4 0.903491 0.900590 0.322 0.04 0.408910 0.301561 35.598
3.0 1.00457 1.00457 <0.01 0.6 0.879376 0.875203 0.466 0.06 0.403451 0.292667 37.853
4.0 0.980178 0.980178 <0.01 0.8 0.837577 0.831273 0.758 0.08 0.394935 0.278779 41.666
5.0 0.892808 0.892892 <0.01 1.0 0.750440 0.738626 1.599 0.10 0.379904 0.252762 50.301
5.0 0.892889 0.802892 <0.01 1.0 0.757451 0.738626 2.549 0.10 0.570479 0.252762 125.698
6.0 0.680254 0.680253 <0.01 1.2 0.639334 0.618874 3.306 0.12 0.541144 0.225076 140.427
7.0 0.513208 0.513200 <0.01 1.4 0.542475 0.523157 3.693 0.14 0.515982 0.206919 149.364
8.0 0.363058 0.363057 <0.01 1.6 0.449114 0.431811 4.007 0.16 0.491499 0.191307 156.916
9.0 0.223110 0.223109 <0.01 1.8 0.354155 0.339423 4.340 0.18 0.466438 0.176803 163.684

10.0 0.075405 0.075308 <0.01 2.0 0.241172 0.229787 4.955 0.20 0.437390 0.161731 170.443

1 Written by Charles Dawson, David Taylor Model Basin, Washington, D. C.
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Tasre IV. Infinite lattice. C1 = 0.01, C; = 0.99; a = d/2 = 5.0, 1.0, 0.1, respectively.

z PCASE PETC1 % Error  « PCASE PETCL % Error i PCASE PETC1 % Error
0 34,4729 34.4731 <0.01 O 3.98055 4.24116 6.145 O 0.25961 1.20037 78.533
1.0 33.4940 33.4942 <0.01 0.2 3.91276 4.17237 6.223 0.02 0.25686 1.20591 78.700
2.0 30.5255 30.5256 <0.01 0.4 3.70636 3.96269 6.460 0.04 0.24836 1.19518 79.220
3.0 25.4623 25,4625 <0.01 0.6 3.34994 3.59967 7.938 0.06 0.23330 1.17597 80.161
4.0 18.0635 18.0636 <0.01 0.8 281092 3.04810 7.781 0.08 0.20047 1.14545 81.713
5.0 6.65515 6.65522 <0.01 1.0 1.88856 2.09249 9.744 0.10 0.16526 1.08560 84.777
5.0 6.65500 6.65522 <0.01 1.0 1.97984 2.00249 5.88¢ 0.10 0.57317 1.08560 47.202
6.0 1.16278 1.16280 <0.01 1.2 1.21880 1.29005 5.523 0.12 0.52061 1.02678 48.420
7.0 0.305226 0.305239 <0.01 1.4 0.888952 0.942894 5.721 0.14 0.506912 0.997607 49.187
8.0 0.080116 0.089119 <0.01 1.6 0.706157 0.750422 5.809 0.16 0.492843 0.979537 49.686
9.0 0.029591 0.020593 <0.01 1.8 0.611288 0.650505 6.029 0.18 0.485008 0.969542 49.976

10.0  0.016907 0.016908 <0.01 2.0 0.581740 0.619378 6.077 0.20 0.482482 0.966336 50.074
Tasre V, Infinite lattice. C; = 0.99, C; = 0.01; ¢ = d/2 = 5.0, 1.0, 0.1, respectively.

z PCASE PETC1 % Error =z PCASE PETCL % Error z PCASE PETCL % Error
0 1.00993 1.00993 <g.01 O 1.00422 1.00384 0.038 0 1.00523 1.00034 0.489
1.0 1.00980 1.00980 <0.01 0.2 1.00393 1.00353 0.040 0.02 1.00520 1.00030 0.490
2,0 1.00920 1.00920 <0.01 0.4 1.00297 1.,00252 0.045 0.04 1.00512 1.00020 0.492
3.0 1.00702 1.00702 <0.01 0.6 1.00112 1.00057 0.055 0.06 1.00498 1.00002 0,496
4.0 0.998356 0.998356 <0.01 0.8 0.997790 0.997068 0.072 0.08 1.00475 0.999728 0.502
5,0 0.942879 0.942879 <0.01 1.0 0.990103 (0.988961 0.115 0.10 1.00431 0.999131 0.518
5.0 0.942878 0.942879 <0.01 1.0 0.991025 0.088961 0.209 0.10 1.00843 0.999131 0.931
6.0 0.827641 0.827644 <0.01 1.2 0.981708 0.979308 0.245 0.12 1.00799 0.998523 0.948
7.0 0.752006 0.752912 <0.01 1.4 0.976263 0.973736 0.260 0.14 1.00774 0.998218 0.954
8.0 0.701763 0.701770 <0.01 1.6 0.972663 0.970069 0.267 0.16 1.00759 0.998025 0.958
9.0 0.671777 0.671786 <0.01 1.8 0.970578 0.967950 0.272 0.18 1.00751 0.997916 0.961

10.0 0.661890 0.661809 <0.01 2.0 0.960893 0.967256 0.273 0.20 1.00748 0.997881 0.962

the case of the slab with finite reflectors, with C,
0.01, C, = 0.99. Here it is noted that a discrepancy
arises very near to the right-hand boundary, of
approximately 0.3%, in magnitude. This is probably
explained by the fact that, in this particular problem,
the first-order continuum coefficient A(—»), » > 0
vanishes as C — 0. A closer analysis reveals, how-
ever, that the higher-order contributions to this
term do not vanish in this limiting case. Since es-
sentially the entire solution is contained in the
continuum when C — 0, the neglect of the term
J& A(—»)e*” dv can contribute an error near the
right-hand boundary. This difficulty does not arise
in the lattice problem.

The very thin region solutions, i.e., those for
regions 0.1 and 0.2 mean free paths thick, appear to
break down completely. Solutions may be in error
by a factor of 3 to 4, being at times either uniformly
high or uniformly low. While difficult to prove ana-
lytically, this behavior indicates that the first-order
approximation does not conserve neutrons.

The problems which deal with region widths which
are one and two mean free paths thick appear to
indicate the approximate lower bounds on the
of the wide-region approximation. Here the percent
errors range from less than 0.1%, to almost 109,.

Discontinuities at the interface become significant,
with observed errors as high as four to five percent.
Again the solution may be uniformly high or low.

Tasre VI. Average 9 error for various values of Z,/2; and
region thicknesses.

Interface  Right-hand {9, Error}

C: ¢y  coordinate coordinate Prob.2 Prob.3
0.01 0.99 5.0 10.0 <0.01 <0.01
0.01 0.99 1.0 2.0 2.173 0.157

.01 0.99 0.1 0.2 95.037 0.725
0.99 0.01 5.0 10.0 <0.01 <0.01
0.99 0.01 1.0 2.0 0.243 6.405
0.99 0.01 0.1 0.2 38.320 64.715

These results are summarized in Table VI, which
shows the behavior of the average error, defined by

L
{error) = 1 |error| dz
]

for the various combinations of parameters, L is the
distance from x = 0 to the right-hand boundary or
symmetry plane.

VII. CONCLUSIONS

It has been demonstrated that Case’s method can
be applied to the solution of multiregion problems in
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slab geometry. First-order solutions have been ob-
tained with relative ease, based upon a wide-region
approximation. Numerical analysis and comparison
with transport computer codes indicates that such
solutions are essentially exact for region thicknesses
of five mean free paths or more. Errors of 109, or
less are observed for region widths of two mean free
paths, indicating an approximate dividing line for
the validity of the wide region approximation. Such
solutions appear to be greatly advantageous in
treating problems with large homogeneous regions,
for which numerical transport methods begin to
break down because of mesh spacing limitations.

Furthermore, an interesting parallel with the work
of Selengut® and Pomraning and Clark’ is observed.
These authors have attempted to improve P, dif-
fusion theory by using the transport diffusion length
and allowing the current and/or the flux to be dis-
continuous at an interface. This procedure, while
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predicting the correct exponential behavior, does not
necessarily give the magnitudes of the exponential
terms correctly. Alternatively, one could use the
discrete coefficients obtained by Case’s method to
form the asymptotic solutions. Although the bound-
ary conditions are more difficult to apply, the exact
asymptotic solutions are obtained if the regions are
sufficiently wide.
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If the coupling constant is large enough, but still smaller than its critical value, there exists a
V6-bound state in the Lee model. We find the bound-state wavefunction via the solution of the
homogeneous Killen-Pauli equation. The condition for the existence of a V6-bound state is seen to
give a statement about the uniqueness of the scattering solutions of both the V8- and N2¢-integral
equations. There exists no N28-bound state if the V particle is unstable.

1. INTRODUCTION

JJY OUND-state problems in the Lee model have

been discussed at several oceasions in the litera-
ture. They can be grouped into three classes and
have been solved in the order of their complexity.
The VN-bound state has been investigated first*
and most completely.” The V particle can be con-
sidered as N6-bound state either for part of the time®
(Z # 0) or entirely (Z = 0).* The V8/N26-bound
state represents the problem which has the most
realistic structure due to the fact that the V particle
is the only one which undergoes renormalization. The
possibility of its existence has been pointed out by
investigating the structure of the V@ amplitude®®
which was derived by Amado.”

* Work supported in part by the U. S. Air Force under
contract AFOSR 500-64.

t Present address: Rutgers, The State University, New
Brunswick, New Jersey.

1 S, Weinberg, Phys. Rev. 102, 285 (1956).
( 9’61\§ Mugibayashi, Progr. Theoret. Phys. (Kyoto) 25, 803
1961).
3 G. Kiillén and W. Pauli, Kgl. Danske Videnskab. Selskab
Mat.-Fys. Medd. 30, No. 7 (1955).
( 9:; 61) C. Houard and B. Jouvet, Nuovo Cimento 18, 466
1 X

§ M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev.
124, 1258 (1961). H. Ezawa, K. Kikkawa, and H. Umezawa,
Nuovo Cimento 23, 751 (1962). H. Chew, Phys. Rev. 132,
2756 (1963). This last author derives, but does not solve, the
Vo egua.tions for a spin-dependent interaction. We have
extended our method of solution to this case and hope to
report it in another context.

¢ T, Muta, Progr. Theoret. Phys. (Kyoto) 33, 666 (1965),
has independ’ently obtained the wavefunction for the Vé
bound state. His method is very interesting because he relates
the expansion coefficients to matrix elements of the V-current
for which one can, following Amado, obtain a Muskhelisvili
equation. Our result, although given in quite different form,
agrees with Muta’s. To derive the bound-state condition
he uses however the full V¢ amplitude instead of only its de-
nominator. The numerator of the V8 amplitude [Eq. (6) in I)
has a zero for Z < 4. This explains why the value Z = }
plays a special role in Muta’s work. We may emphasize that
the value of the coupling constant for which Z = % and the
value for which D(x) < 0, the bound-state condition, are
independent.

?R. D. Amado, Phys. Rev. 122, 697 (1961).

Earlier®® the complete solution of the three-
particle sector in the Lee model has been given under
the condition that the coupling constant be small
enough so that no bound state exists. It was pointed
out in I that the presence of a bound state will not
affect the scattering solutions of this sector. The
scattering states will, however, no longer form a
complete set. Also the question of uniqueness was
left open.

In this note we address ourselves to the bound-
state problem in the V6/N26 sector. If the coupling
constant is large enough but still less than its critical
value, which would lead to a non-Hermitian Hamil-
tonian, there exists a V6/N26-bound state. We
show this by an analysis of the common denominator
function of the three-particle amplitudes, using the
form we have derived earlier.® We find the bound-
state wavefunction via the solution of the homo-
geneous Killén—Pauli equation. To do this we give
a simple direct method to solve this type of integral
equation. This technique can be applied to more
general cases. By relating inhomogeneous and homo-
geneous equations we show that all the solutions of
this sector are unique.

In Sec. IT we give precise conditions for which a
Vé-bound state exists. In Sec. III we derive its
state vector for convenience in the realm of the
Tamm~-Dancoff method. The solution of the in-
tegral equation is given in Sec. IV together with a
proof of uniqueness for both scattering and bound-
state solutions. The N2 sector, i.e., scattering am-
plitude and the existence of an N26-bound state

8 R. D. Amado and R. P. Kenschaft, J. Math. Phys. 5,
1340 (1964).

9 A. Pagnamenta, J. Math. Phys. 6, 955 (1965), here-
after referred to as I. We are using the same notation and
Hamiltonian as in I. Also: Im G*(w) = 47 w)k(«) and
Sw) = [¢2/2n)[u(w)/(2w)}], where u(w) is the ordinary
cutoff function normalized to u(k* = 0) = w(w = u) = 1.
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in a modified Lee model where the V particle is
unstable, is discussed in Sec. V. In Appendix A we
give a graphical method to derive the relevant
equation. In Appendix B we show that the bound
state has a nonvanishing norm. We verify the solu-
tion of the N26-integral equation for the unstable
V in Appendix C. That the spatial dependence of
the bound-state wavefunction shows exponential
decrease at large distance is shown in Appendix D.

II. EXISTENCE OF A V0-BOUND STATE

It has been observed some time ago® that the V@
elastic amplitude can develop a dynamical pole
below the physical threshold thus indicating a bound
state'®. In I we have shown that all the amplitudes of
the V8/N26 sector of the Lee models contain the
denominator function®

D'w) = 1 — H'(w)A™(v), 1
where®
H(z) = 2G(2), @
G(Z) = II?wG+(w'§ dw / (3)
and
4@ =t [ s g @

Here we have indicated the boundary values of
our analytic funetions as z — @ = 7¢ by superscripts
(). For example, G'(w}) = G(w + 4¢); hence
G (wo — w) = G(wg — w 4 z¢). From (3) we read
off: G(0) = 1 and find the wavefunction renormaliza-
tion constant Z by

lim G(w) = Z. &
Let g. be the critical value of the coupling constant
for which Z = 0. Beyond the ordinary ghost state
appears’ as a zero of G(w). Here we assume that
the coupling constant be suberitical, ¢* < g2, so
that 0 < Z < 1.

Both H(w) and A (w) are real forw < u. H(0) = 0
and therefore D(0) = 1. Neither H(w) nor A(w)
is singular in the interval 0 £ w < p. From (3)
follows that H{u) = uG(u) > 0. Writing (4) out as

1 ° Im H(') do’
H@)? (0 — 0)Glo — o)

we see that H(u) > 0. Hence the product

© That a zero on the real axis below threshold in the
denominator of the scattering amplitude indicates a bound
state was pointed out by R. Jost, Helv. Phys. Acta. 30, 409
(1957).

Alw) =

3567

Diw}

Fie. 1. D(w) for g* large

" enough so that D(u) < 0, but

| w gt < g2 80 thatZ>0 For

°| fﬂ o Z-1 < 0 there is no intersection.
“ »

H(u)A(z) > 0. The bound-state condition
Dws) =0, O0<uwp<up ®)
will be fulfilled if D{x) < 0 (Fig. 1) or equivalently if
H(p)AG@) > 1. (6"

Since A (w) contains a factor ¢* in Im H '(w)® we
expect for a given cutoff function (6') to be fulfilled
for large ¢°. This will give a Vé-bound state and not
a ghost if still ¢° < g¢2 For « < u the product
H{w)A(») is monotonically increasing and using (5)
in (4) one easily finds (Fig. 1)

1 — H(—o)A(-—®) = Z7.

That any finite value of D(w) < 1, hence of D{w) < 0,
can be reached for g° < g2 is seen as follows. H(y)
is finite for all finite ¢° < ¢?. Clearly for ¢* < g3,
A(u) is finite. For ¢° > ¢? the zero of G(w) which
corresponds to the ghost makes the integral of A (w)
divergent because the integrand contains the real
denominator G{w — «') and the pole at o’ given
by w — & = A < 0 is in the range of integration.
Therefore for g° > g%, A(w) for @ < u is divergent
and so is the product H(u)A (u). Hence it can obtain
any finite value already for ¢° < g7,

This shows also that our discussion is only valid
for Z > 0. The expressions (1) have been obtained
by explicitly assuming the no ghost condition which
entered the solutions of the integral equations
through the statement that G(w) had no zero. This
explains why there is apparently no intersection in
Fig. 1 Z < 0.

In principle one can invert the unfortunately
transcendent equation (6) to find the binding energy
Ey = u — wp as a function of ¢°. For Z — 0 we
observe that wp — 0 and the V6-bound state moves
into the ¥ particle. If the coupling constant becomes
too weak to cause a bound state it may still cause
Re D(w) = 0 for @ > u. If the parameters of the
model are favorable this shows up as a resonance
in V9 scattering.

In Bec. V we show that there is no bound state
in the L.ee model that has only one unstable V
particle.'! We do, however, expect a bound state
in the model modified to contain a stable V, and

1V, Glaser and G. Killén, Nucl. Phys. 2, 706 (1956).
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an unstable V,."> Depending on ratio and size of the
two coupling constants we expect none, one, or two
bound states in the Lee model with two stable
V particles.'®

III. THE BOUND-STATE WAVEFUNCTION

The Vé-bound state which exists under condition
(6) will be an eigenstate of the total Hamiltonian.
It can be written as a linear combination of the bare
states |V8) and |N¢,6,) which we take to be symme-
trized and to have norm one,

B = [ & Zak) |V0,.)

+f &% &k’ B, K'Y [N6uburr).  (7)

The eigenvalue equation (3¢ — mp) |B) = 0,
where 3C is the Lee model Hamiltonian given in I,
shows that the coefficients a(k) = Z~t (B | V6,)
and Bk, k) = (B | N6,6;) obey the relations

H (w5 — w)a(k) = —f(w) f oy @) o

w —wp t+ow
(w1 + w; — wB):B(kl; kz)
= Hflw)a(ks) + flwda(k)].  (9)

mp is the mass of the bound state and wp = mz — m,
where m = my = my. Equation (8) is the homo-
geneous Killén—-Pauli equation. Once we have solved
it, B8(ky,k.) follows from (9). A convenient but heu-
ristic method to derive Eqs. (8) and (9) using graphs
is given in Appendix A.

In the next section we decide the question of
uniqueness for the entire three-particle sector and
at the same time solve the homogeneous equation.
There we find [Eqs. (36) and (39)]

a(w) = N[f(w)/(@ — w5)]J(w), (10)
where
1r° de’ 1 1
J() = 7 J, o —wp FoH (s —«) Im G ()
(11)

As expected this has a pole at @ = wp and solves
Eq. (8) if (6) is fulfilled. From (9) we get

J(wl)]- 12)

1 P, K. Srivastava, Phys. Rev. 131, 461 (1963).
1 P, K, Srivastava, Phys. Rev. 128, 2906 (1962).

x| e T +

Wy — Wg w — Wp
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It is interesting to verify that |B) is normalizable.
The normalization constant N is determined by

(B|B) = 1. (13)
We show in Appendix B that N* # 0 and positive.

Therefore we can take N > 0.
Note

(B|B) =0

if mz  ## mp because then [B’) = 0.

The Fourier transforms of a(w) and B(w’, w'’)
in z space are the bound-state wavefunctions. They
show exponential decrease at large distances, which
we verify in Appendix D for a(w).

(14)

IV. SOLUTIONS OF THE EQUATIONS AND
UNIQUENESS

In this section we solve the homogeneous V4@
equation (8) and decide the question of uniqueness
for all the solutions in the V6/N26 vector. To this
we have to relate homogeneous and inhomogeneous
equations. We therefore start by giving a simple
strictly deductive method for solving the inhomo-
geneous V@ equation.* This method is easily gen-
eralized to apply to the other integral equations in
this sector as well as to the one obtained in the case
of the unstable V particle.

The inhomogeneous integral equation for V6 scat-
tering'® can be brought into the form

G (wo — w)M(w)

= 1 +gfm /Im G+(w,). =7 M(w’) . &A)’.
Ty 0 —wy —tew + @ — wy — 1€

(15)

Due to the displacement w — w, — « in the Cauchy
denominator this is not a simple Muskhelisvili'®
equation. It can, however, be reduced to a multiple
Hilbert problem and we show that in spite of the
fact that (15) has not in general a completely con-
tinuous kernel and is therefore a singular integral
equation a uniqueness theorem similar to the Fred-
holm alternative is valid. We want the integral in
(15) and in the following to exist without subtrac-
tions. To this it is sufficient to assume that both

1 Different methods to obtain solutions of this singular
type of integral equations with a displacement in the de-
nominator have been given by G. 8. Litvincuk, Izv. Akad.
Nauk. SSSR. Ser. Math. 25, 871 (1961); also in Refs 7 and 8.
E. Kazes, Pennsylvania State University preprint. Ch.
Sommerfield, Yale University preprint. Except in the first
of the above references in which, however, a circular contour
is considered the homogeneous equation is not discussed. In
our discussion we follow to some extent Litvincuk and Kazes.

15 Equation (62) in Ref. 3 or Eq. (13) in I.

1 N. J. Muskhelisvili, Singular Integral Equations (P.
Nordhoff Ltd., Groningen, The Netherlands, 1953).
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Im G(w) which contains the cutoff and M (w) satisfy
a Holder'” condition. This includes a square cutoff.
In special cases this condition can be relaxed.

We can extend the definition of the function
M{w) in (15) into the complex z plane by writing

Glwo — M)

=1+3f
™
Comparing this with Eq. (15) we see that we recover
the sought-for function M (w) in the limit z — » — ¢
or M(w) — M {v) = M(w — 4¢). We have anti-
cipated this in (16) by writing M~ (w) under the
integral sign.

From (16) we see that M (2) is analytic (regular
and bounded) in the entire 2z plane except for a
branch point at @ = w, — g to which we attach a
cut along the negative real axis to w = — ., Further
M(w) = const.

We now write Eq. (16) twice, once each for the
points z = « == te and subtract. This gives

GHwo — )M (w) — M ()]
= 2¢ Im G (wo — w)[M ()
+ M*(wo — w)]8(wo — @ — 1), )]

Equation (17) is usually solved by finding a relation
between M(w) and M (w, — w).'* We introduce

Im G () M (o)

@ — wo — tew — o + 2

do’. (16)

N@ = M@ + M(w, — 2); (18)
then for @ < wy — u, Eq. (3) becomes
N¥(w) — N7(w)
%%(_wo_—_w) N7 {(w)b(wo — & — p). (19

Due to (22) N(2) has both left- and right-hand cuts.
Therefore we replace in (17) w by w, — . Now we
can evaluate it for w > . In this interval M*(») =
M~ (w) and using (18) we obtain
N*(w) — N (w)

R G'_( ) N

Whether or not there is any space left between
wo — u and p does not matter for this approach;
one simply takes the discontinuity across each cut
separately. Equations (19) and (20) define a homo-
geneous Hilbert problem, (two different discontinui-

@b — .  (20)

17 A function ¢(x) satisfies a Holder condmon of degres k
if for any two points zi, 2 in the interval L.

o(z1) — olzs) < Clzy — le,
where C is an arbitrary constant and 0 <k < 1.
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ties) the solution of which is standard).'® We find
log N(2)
f"’“” log G (w, — w') — log G (w, — ') do’
= 2

m—z

1 log G*(w’) — log G™(o’
27t W —z

) g + log Fi(2).
(21)

The integrals can be done by contour integration
using the reality property of the logarithm and
{5) to cancel the contributions of the infinite circles.
Fi(z) is an entire analyti¢ function which behaves
like a constant at infinity and therefore is just a
constant. Thus

+

c!
N = ot — o 2
Equation (17) can now be written
M*(w) — M ()
- 2 B = g — 0 — . @)

M(z) has only the left-hand cut; therefore this
Hilbert problem has the solution

M(2) = Fy2)
1" 4 ImGW) e ,
_Wf# T e G Ve = o).

For the same reason as above, the entire analytic
function F,(z) is a constant. Collecting we find

Cl f dw'
v J, o —wt 2
1 1
X oo —a)
It is convenient to subtract from the integral in

Im G-l—(wl) *
(25) its value at z = 0 — 7e. Redefining the constants
(25) becomes

(24)

M@) =

(25)

M@=%+Q§

do’ 1
x .[,. (@ — wo + 2)H (wo — ) Im G W)

Since the inhomogeneous term in (15) had no dis-
continuity it did not enter the derivation of (26).
Evaluating M{0) in {16) and (26) gives

M©O) = 1/G"(w) = Ca @0

and the constant C, is found easiest evaluating (16)
and (26) for z = w, — 7€

(26)
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oy = L W
M~ (w) = T +6 =
1

X f H e — &) "2 @)
Im G* ()

(-]
= W
—1+1r o' — @y — T

M (o) do’. (28)

The upper integral is just A*(w,). The last integral
is evaluated by use of (26) and (27).

:%[ Im G* (o) M) do’

o' (@ — wy — 1€)

w1 (7 Im G* (') do’
T (w7 J, @@ — we — )
+ 4 ’ 1
02 f In G () do’ 1
T o —w —tew
© . . M” 1
X j,: (0 —wo+o —ie)H (wo—o' Im G w’’)
(29

Using (3) the first integral becomes G*(w,) — 1. If
‘we interchange orders of integration in the last line,
we can do the inner integral and find for the coef-
ficient of Cy: wold* ()G (wo) + H™ *(wo) — w0 'l
Using this in (29) we can solve for C, and find

C, = 2/[1 — H*(wo) A (wo)]. (30)
If 1 — H'(wo)A*(wo) 5 0, the expression
- 1 2w
M) = Gy ~ 1= H A @)
1 dw’ 1
X - f,. (@ — wo + o — 1e)H (wo — ) Im G (")
(81

contains all the analytic properties one can read off
from Eq. (16). If this equation has a solution at all
it is given uniquely by (31). That (31) actually
solves (15) has been shown in I by direct substitu-
tion.

If D(wo) = 0, (30) does not. exist and the inhomo-
geneous equation (15) has no solution. We show
that in this case only the related homogeneous equa-
tion hdsa solution which is unique up to a constant
factor.

For a cutoff function f(w) which has no zeros for
wo > p (long tail) one can show that D*(w,) has a
nonvamshmg imaginary part there. Therefore in the
region w, > D (we) # 0 and the scattering solution
to the V@ equation (15) is unique. The integral

‘A. PAGNAMENTA

equation for N26-elastic scattering'® can also be
reduced to a form equivalent to (15) and therefore
its solution too is unique.

For w, < p, then called wg, D(ws) can vanish
(Sec. IT) and we would like to find the solutions of
the homogeneous equation. If we make in (8) the
substitution

a(k) = [f(w)/wlws — @)1Mow)
we find for M(w) the homogeneous part of Eq. (15)
with @, — wp:
G (ws — w)Mo(w)
*Im G' () M)

I3 ’
w —Wwp W — Wy T

dow’.

2] (32)
Since now wz < u the denominators are well defined
for w in the physical domain. For w < u we consider
M~ (w) as the analytic continuation which we have
indicated in (32). Since we did not use the inhomo-
geneous term to derive (26) this expression is also
valid and gives the most general ansatz for the homo-
geneous solution. From (26) and (32) we find im-
mediately

Mi0) = C, = 0. (33)

The solution of a homogeneous equation is only

determined up to a factor. Therefore C, is free and

we expect
My(w) = Cxl;’_r

© de’ 1
X ./,l (@ — wp + @)H (wp — &) Im G* (o)

to solve Eq. (32). We now proceed a little further
and show that in general also C;, = 0 and therefore
the homogeneous equation has in general no solu-
tion; except if the bound-state condition (6) holds.
Then it has exactly the solution (34).

Again from (32) we find
® Im G (w

M) =22 [ IRy

Here we substitute (34) on both sides to find

(34)

© + '3 ?
CwpA(ws) = C, ot :3 lr_n_lg_(ﬁ_)i“’_ 1 (35)
v " W — Wpg T
y de” 1
X ‘/‘: (Cl)” - wB + (\)I)H-(O)B _ O)” Im G+(wll)'

Interchanging orders of integration the right-hand

18 Equation (II) in Ref. 1.
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side becomes

) © ’
¢ f H"(ciw— 2y m G*l(w') ;
® Im G*(w'’) do'’
X -[u (w” - “’B)(“f” 2‘ wg + wl).
The inner integral is (1/w"){G{wz) — Glwz — «’)] and
using this in (35) where we take everything to one
side gives
CilwsA(ws) — H(ws)Alws) — GHws) + 1] =0
or, multiplying by G(ws),
CiG(wp)ll — H(ws) A(ws)] = 0. (36)
G(wp) # 0; therefore this can only hold if C; = 0

unless the square bracket vanishes which is the
bound state condition (6). Q.E.D.

V. LEE MODEL WITH AN UNSTABLE V PARTICLE

If we let in the ordinary Lee model the renormal-
ized mass of the V particle becomes larger than
the mass of the N plus the mass of a 6 meson,

37

the V particle becomes unstable against the decay
V — N + 6. Clearly now my % my. The N0 sector
of this model has been solved by Glaser and Killén!
who find for the 7' matrix for elastic N6 scattering

my > My + u;

Trolw) = —f(w)/Hw), (38)
where'®
Aw) = Z(my + @ — my) + Zém
Ll mEGO W, g

7
rdy @ — @~ 1€

The unstable V shows up as resonance in the N@
cross section and can be shown to cause zeros of
H(w) which, however, lay on the second sheet of the
Riemann surface of H(w).”® On the first sheet where
we perform our integrations H (w) has no zero hence
H™'(w) has no pole. This reflects itself in the solutions
for the three-particle sector. Since there is no stable
V the V has no in-field and the only amplitude in
this sector is the one for elastic N24 scattering. To
compute it we go out from the state vector

iNGk; 81:-: in>

= IN06) + 2 f o(luka; ) |V ey &K
+ [ Wllka; WE7) [NO'07) K R, (40)

19 Im Hw) = Im H{w).
20 M. Levy, Nuove Cimento 13, 115 (1959).
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which is an eigenstate of the total Hamiltonian
with eigenvalue m + w, 4+ w,. The Schrédinger
equation leads to the relations

(Z(wy + w2 — @) + Zom]e(ky, ks; k)
= 3fe) 8k — k) + 3f(ws) 8k — k)

+2 [ Wik B O, (1)

{1 + w; — o — NPk, KK

= 3w No(kika; k') + 3w )e(lika, k7). 42)
Eliminating ¥ we find for ¢ the equation
H(wl + wy — w)¢(k1k2; k)

= flw) 8k — k) + 3f(w)8(k — k)
HeNelkrky; k) 371
_f(w)fw'-{-w——wl—-wg-—iedk' 43)

Now we may make the substitution

1
20 (w0 + wp — w)

ok, kos k) = [f(wl) 6k — k)

F Joalh ~ k)] — Kol po oy g

28 () H (o)
to get
Hw, 4+ vy — 0)L{w; ., ©s)
H(w) H(wy)
W — € W — W ~— 1€

— .}i “Im H+(w’)L(w', @y, W) dw,.

Ty 0 Fw—w — w — Te

(45)

The solution to this integral equation can be found
by a slight generalization of the methods developed
for the V0 equation. Observing that L{w; w,, w,) in
(45) has two poles with residues <1 and a left-hand
cut we are led to the ansatz

) _ 1 1

L(m’w”%)“w—w;—ie W — wy — Te

+ Clws, w)l (w; + ws — ), (46)
where

1[° 1
1o =1 [ [n i3]
1 dw’
47)

X A +w—o)o — z

The constant C (w, and w, enter only in a parametric
way) is determined by direct substitution into Eq.
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(45). We do this in Appendix C. There we find that
(46) solves (45) if

C(wu wz) = "2/ Z(“’l'.'l" wz): (48)
where
17r° 1 des’
a0 =1 [ mpglressy ®

The T matrix for elastic N26 scattering is given
by the residue of the pole at &, + w, — o’ — &’ =0
in Yw;, w) @, @) in (42). Omitting a factor 27
ey + wy — o — ') we find for the nontrivial
part of the 7' matrix

_ S w)fw)f(er + w3 — «)
H () () H (0, + w; — @)
X [I+(w) + I-(wl + Wy —™ w)].
The last expression can be simplified using relation
(C2) in the Appendix. This gives

TNzo(wl, Wa; "’) =

Tyze(w1, w3} @)

= —1 f("-’i)f(wz)f.(_w)f(wi'l‘ wy — ) .
Aoy + wp) A () H (@) H (@ H (0, + w; — )

The denominator functions of the second factor
represent two-particle interactions, for short called
final-state interactions. They are known to be non-
vanishing. The only indication for a three-particle
bound-state pole could come from a zero of A(w).
Since A7'(z) has no pole on the first sheet it satisfies
the unsubtracted dispersion relation

H'@) = }r f: [Im I?_(IJS] ;;iw_’—z ; (BD)

using this in the expression (49) for 4 (w) we find
1 1 do’
10 =1 [ [ g%
dw’/

® 1
x ./:, [Im H+(w//):| @ +o& —w
For w < 2u the last denominator never vanishes
and therefore in the entire range for a possible bound
state A(w) > 0. Therefore the elastic scattering
amplitude shows that there is no N26 bound state
in this Lee model.

The same conclusion is obtained by deriving the
bound-state wavefunction. For an N26 bound state
we still can make the ansatz (7) where we put again
~ to indicate the unstable case. For the wavefunc-
tion @(w) we obtain instead of (8) the homogeneous
equation

(52)

A (or — i) = —fw) [ SR,

@w —wp + w

(83)

A. PAGNAMENTA

Since H(ws — w) has no zero at w = wp, &(w) has no
pole there and cannot be a proper bound-state wave-
function. Indeed a proof similar to the one that led
to relation (36) in Sec. IV shows that this homo-
geneous equation has only the trivial solution &(w) =
0. This also shows that the solution (46) is unique.
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APPENDIX A

The two equations (8), (9) can be obtained by the
use of graphs in the following way. The function
a(k) denoted by a square black box in Fig.' 2 is

2 - P P @

Fia. 2. (a) Sample of a Feynman diagram contributing to
the B — V8 vertex. (b)—(d) Relations for the vertex functions
ah(square black box) and 8 (round black box). Explained in
the text.

related to the vertex function describing the decay
of the bound state B into ¥V 4 6 in that the V has
been taken off the mass shell. Similarly, 8(k,, k.), the
round black box in Fig. 2, is related to the vertex
function for B — N26 in that the N is off-shell. If
B is stable these are clearly forbidden processes. If
they were allowed, the vertex function for B — V@
would be on-shell an infinite sum of Feynman graphs
one of which is given in Fig. 2(a). All of them have
in common that the last vertex describes the absorp-
tion of a by an N. Summing all but this last vertex
into a round black box we can write the relation
of Fig. 2(b), where double lines (off-shell lines) rep-
resent propagators. Especially the last double line
is to be read as [Z(E — m) + &m] ™. The N propaga-
tor is simply —[E — m]™ and energy conservation
gives the value of E. A set of diagrams similar to
the one in Fig. 1(a) can be written for B — N?26.
Their common last vertex is V — N8 described in
our notation by a factor f(w). Taking care of sym-
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metrization for the two ¢’s we find Fig. 2(c), which
is immediately recognized as Eq. (9). Substitution
of Fig. 2(c) into 2(b) gives Fig. 2(d). The bubble
diagram factors and can be taken to the left. Re-
membering the definition of H (w)4

— w — fe

(A1)

one reads off Eq. (8). This derivation also works
in the higher sectors of the Lee model. Note that
Fig. 2(a) is a Feynman graph, 2(b) ~ (d) are not
because some external lines are off-shell.

APPENDIX B

Here we evaluate the norm of the V8-bound state.
Using (7) in the normalization condition (13) leads
to

N?=2Z f Yo () &'
+ 2 f B, BB, B7) & R

Substituting for « and 8 and going over to «' as
variable of integration we find
= 2L [ PR S ) o

* Im H(w") Im H(w'")
(0 + o' -—w)

;77—__—;'; J (w")]

+21r

<[5
-

L jw) +
Wp
[

o —

Observing that the second integrand is symmetric

in o and &’ and J* = J is real since wpz < p we can
replace the product of the two square brackets by

2 2 2
@ o T

J*(wl) + 7 1 — J*(wn)] dwl dw".
(D55 W — g

T 4 J 144 .
T a@ =g T
‘We then obtain

_Zlf ImH(w

f m H[w Jz(w’) %r
Im H(w”)
X [ (wll + w’ —w )2
1 f Im H(w)
J(w ')

[ @

JB( I) da’

dﬁ)" dwl

Im H (w
- ws)(

3 ) da”
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The inner integral in the second term can be done by
contour integration. Denoting a derivative with a
prime, we find

_1_]“’° Im H(w'")
rJd, W 4+ —ws)

and we see that the terms with Z cancel. Hence
N = 2 [P, s — o)
f Im H (w) T )

Here one can verify easily that none of the de-
nominators vanishes. Therefore N~ > 0 and, which
is important, N* # 0. Q.E.D.

do' = —Z 4 H'(wp — o)

APPENDIX C

Here we determine the constant C(w;, w,) in the
ansatz (46) by direct substitution into Eq. (45).
Substitution of the ansatz under the integral leads
to the following three integrals which we can evaluate

(wo = w; + ws):
I{w; wy, wy)

] Im H* (') do’
(o — wo + w — te){w — o — te)

[H (C"o —w) — H+(°31)] + Z,

A -w—{—za

I‘Z’(w; Wy, 632) = Il(w;wh wl)!

Is(w;(ﬁa)

B ®  Im H'() -

e f“w_w+w_z€1(w o) do’

_ Al Im H* ()  do' ”( )

=-CZ fco—wo w-—-iewl. Imﬁ(w‘)
dwﬁ‘

Xﬁ (wo — & ) + o — wy — 1€
(interchanging orders of integration)
1 d’ 1
= f [ H' ”)]H @ —a)r

Im H(o") do’
X ./; (0 —wo + o — i) — wo + &

— 1¢)
The inner integral can be done to give

@' =0 = i [H (@ — o) ~ H(w ~ o] — 2
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With this we find
Ia(w;wo) = _C H—(wo d OJ)

X ;lr- [ [Im H*(lw”)] B (w0 — w”??o::’ e — 19
ol [T mgrn |

roz | [Im ﬁ*(lw">] ﬁ‘(wfw— ")
Using the definitions (47), (49), (51), this reads
Iy(w; w)) = C[H" (@) + ZA*(w0)
— H (0o — o) (w)]. (C1)

Before we can proceed to collect all the terms we
have to prove the relation

I'w) + I'(wo — w) = 1/H () H (0o — ). (C2)

This relation is now that H(w) has no zero much
simpler than it was in the stable case. Call

K() = [I/H" @A (@ = «)] — I'(w)

and insert the integral representations (49), (51)
for [H* (w)]™" and I'*(w) to get

1 1
x [H“(wo o) " A — w')]' (©3)
The last square bracket becomes
1 1 .,
x f [Im H+(w”):l do

S
o —wotw—de o —w Fw — e’

making a common denominator
w —w [ 1
Im =-
= [ " H (w">]
de’’

X (@ —wo + @ — i) —w + o — ie);

we can now insert this into the last expression
(C3) for K(w). Interchanging orders of integration,

1, 1 dw’
K(w)=1_rfu I:Imﬁ+(w')Jw'—wo+w—ie

1 ® 1 de'’
= Im =+—- .
erf“ [mﬁ(w’)]w”—wo+w'—z‘e

The second integral is just A (w, — »)™* and K

A. PAGNAMENTA

becomes
Nl
K@ =1 [Im H+(w,)]
do’ _
= VR — = I (w0, — w).
XH(wo—w)(w — wp + w — 1e) (QE];

Now we can use identity (C2) in the last expres-
sion for I; (C1) to write it

I(w, wo) = CH (wo — )] (wo — w) + ZCA*(wy).

Collecting I, + I, 4+ I; and substituting the ansatz
(46) also on the left-hand side of the integral equation
(45) we see that most of the terms cancel. The
equation reduces to 0 = 2Z + CZA*(w,). In general
Z # 0 and we conclude

Clwy, ws) = —2/A*(w0).
APPENDIX D

The decomposition (7) of the bound state can be
interpreted that for part of the time B is a Vé-
bound state and part of the time an N20 system.
In the first case a(w), or its Fourier transform, is
the wavefunction; while in the second interval it
is given by B(w, «’). We show on the example of
a(w) that its Fourier transform has the correct
spatial dependence for a bound-state wavefunction.
Define it by

o) = [ o) k.
Substitution of a(w) from (10) leads to

o@ =N [ & e‘*-’;@w—J(w).

We remember that f(w) is, up to factors, the Fourier
transform of the source function U(|x|):

_ g —ik.x’ ’ 3_s
f(w)—er U(x’]) d°%’.

We can insert this into the expression for o(x)
to get
ik.(x-x’)

o(x) = %; f &z U(lx']) &% m J().

In the inner integral we can do the angular integra-
tions. This leads to an expression involving sin
k|x — x'|; k = |k|. We then remove sin k [x — x| by
extending the integral over k from — o to +
where we use the evenness of w(k*). This integral
then becomes
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1 @ es‘klz—:’lk dk
lz — 2’| J-o [w(E) — wp]2w(k®)

Jw(FD].

We want to evaluate the leading term of this
integral by contour integration.

The function J(w) (11) is regular in the upper
k-plane. The function [w(k*)]™* has branch points
at & = 2 7u. We attach a cut to the one at + 7u
up the imaginary axis and to the one at —iu down
the imaginary axis.

We further expect to get a residue from the van-
ishing of the denominator w — ws. Since k2 =
(w2 — u)t < 0, we have also |kz| < u. We can
write

® + & — & + o

[6+5 - 6+3]

Expanding this into a Taylor series around k =
t |ks| we find

w — wp ~ (1/26)(k — 7 [ks)(k + 1 |ks])

and we see that this has zeros at k = =% |ks| on the
imaginary k axis.

The exponential in the above integrand is damping
in the upper k-plane. Therefore we can deform the
contour of integration, which is now along the entire
real axis, such that it is wrapped around the upper
cut on the imaginary axis. Thereby we pick up the

W — wpg

If

THE LEE MODEL

b,

® iikgl

365

-

> —iIKal
¥ -ip

Fia. 3. Contour of integration for the bound-state wave-
function.

residue at k = ¢ |kp| (I"ig. 3). Since |kg| < u, the
contribution from the cut, having larger masses,
will be damped faster than the contribution from the
poleat k = 7 |ks|. We find for the leading term, taking
27 times the residue,

T e—lkal Lx—-x'}

20 (2007 o /14 o)

Collecting and substituting into the expression for
o(x) its leading term becomes, up to a normalization
constant N,

s - [x = x"]]

k- x'|

o) ~ N [ @ UG 2212

Since U(r) is of finite range this behaves for large
values of |x| = r as r™' exp [— |kz|r], which is the
typical behavior of a bound-state wavefunction.
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A general theory of the realizations of Lie groups by means of canonical transformations in classical
mechanics is given. The problem is the analog to that of the characterization of the projective repre-
sentations in quantum mechanics considered by Wigner, Bargmann, and others in the case of the
Galilei and the Lorentz group. However, no application to particular groups is given in this paper.

It turns out that the generators y. of the infinitesimal transformations in a canonical realization
of a Lie group § satisfy relations of the form {y,, ¥,} = ¢,¢"¥, + d,s, Where ¢,," are the structure con-
stands of § and d,, are constants depending on the particular realization.

It also turns out that any canonical realization of § can be reduced to a fundamental typical form
by means of a constant canonical transformation in the phase space of the system. This typical form
allows one to obtain a complete characterization of all the possible canonical realizations of G. Once
a suitable definition of “irreducible’’ canonical realization is given, a simple classification can be
obtained in terms of the values of certain functions of the generators y, (canonical invariants).

Recalling the correspondence { } — [ ], formal analogy appears to be achieved with the quantum
mechanical case. Even more, a parallel development of the outlined theory in quantum mechanies is of
interest in the construction of the invariant operators (even in case of non-semisimple groups) and

FEBRUARY 1966

of complete systems of commuting observables acting within the irreducible representations.

INTRODUCTION

T is well known that the study of the dynamical

symmetries of a quantum system is connected
with the characterization of the projective unitary
representations of symmetry groups, specifically the
Galilei and the Lorentz group for nonrelativistic
and relativistic quantum mechanics, respectively.!

In the present paper, we want to discuss the
corresponding problem in classical mechanics. The
most natural approach to it consists in the char-
acterization of all possible realizations of the above
symmetry groups by means of canonical transfor-
mations.

A general axiomatic approach to classical dy-
namics has been expounded by Dirac® who studied
in particular the inhomogeneous Lorentz group.
However, from our point of view, Dirac’s work
represents only a preliminary treatment of the
problem and, besides, some points require a more
detailed and explicit analysis. In this connection,

1E. P. Wigner, Ann. Math. 40, 149 (1939); V. Bargmann
and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 34, 211 (1948);
Tu. M. Shirokov, Soviet Phys.—JETP 6, 664, 919 929 (1958);
C. Fronsdal, Phys. Rev. 113, 1367 (1959); D. W. Robinson,
Helv. Phys. Acta 35, 98 (1962); A. S. Wightman in “Rélations
de dispersion et particules élémentaires’”’ Proceedings of the
Ecole d’été de Physique théorique, Les Houches (Hermann,
Paris, 1960). E. Inonii and E. P. Wigner, Nuovo Cimento 9,
705 (1952); M. Hamermesh, Group Theory (Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts 1962)
Sec. 12/5-6-7; Hamermesh, Ann. Phys. (N.Y.) 9, 518

(1960), J. M. Levy-Leblond 1. Math. Phys 4,776 (1963)
A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949)

our work may be considered a development of Ref. 2
with a mind nearer to the philosophy of Wigner and
Bargmann in their quantum mechanical characteri-
zation.

As canonical or contact transformation we mean
a transformation in phase space leaving invariant
the Poisson brackets among the fundamental dy-
namical variables, and as canonical realization of a
group a class of canonical transformations with the
same multiplication rule of the group.

A similar question has been raised by Loinger.
Precisely, Loinger and other authors® studied, in
the case of the rotation, the Galilei and the Lorentz
group, the canonical realizations as unitary trans-
formations in the “classical” Hilbert space of
Koopman and von Neumann,* giving essentially
a sort of generalized representation theory for the
classical mechanics. We will consider, instead, in
a direct way, the ecanonical realizations rather
than their unitary counterparts. Since not all the
Hermitian operators in the Koopman—von Neumann
space have a direct meaning, it seems more promising

3 A, Loinger, Ann. Phys, (N.Y.) 20, 132 (1962), 23, 23
(1963); P. Gulmanelli, Phys. Letters 5, 320 (1963),
Lugarini and M. Pauri: “Representatlon Theory for Classical
Mechanics,”” “Classical Representations of the Inhomogeneous
Lorentz Group (to be published). For a different approach
to classical Physics, see also T. F. Jordan and E. C. G.
Sudarshan, Rev. Mod. Phys. 33, 515 (1961).

¢+ B. O. Xoopman, Proc. Natl. Acad. Sci. U.S. 17, 315

(1931); J. von Neumann, Ann. Math. 33, 587 (1932); L. Van
Hove, Mem. Acad. Roy. Belg CL Sci. No. 6 26, 1951)
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CANONICAL REALIZATIONS

from a physical point of view to deal with the
canonical generators themselves.

It will be seen that, with a suitable definition of
“irreducible’” canonical realization, a very close
analogy is achieved with the corresponding quantum
mechanical problem. Moreover, some features of our
treatment will appear to be of direct interest for
quantum mechanies itself.

Qur characterization of the canonical realizations
is limited to the neighborhood of the identity. Thus,
the theory directly applies, in the large, only to
simply connected groups.” For groups which are
connected but nonsimply connected, we characterize
essentially the canonical realizations of their covering
groups. Realizations of the groups themselves can,
in principle, be selected paying attention to questions
of monodromy.

The present paper contains the general foundation
of the theory. In forthcoming papers we shall apply
it to investigations of the canonical realizations of
the rotation, the Galilei, and the Poincaré groups.
We hope to devote a paper to working out the full
implications of the present approach in gquantum
mechanics as well,

In the first section, the concept of canonical
realization is introduced in detail. In the second
section, a suitable canonical transformation is per-
formed on a general given canonical realization,
which allows us to point out the fundamental
features of the whole question; we analyze them in
the third section. Finally, in the last section, we
give the rules for the construction of the most general
canonical realization of a Lie group.

1. CANONICAL REALIZATIONS OF A LIE GROUP

Let ¢ be a given Lie group of order r with param-
eters {(a,, - -+ , @,) and let

(X, Xo] = o Xo; )]
be the commutation relations among its infinitesimal

operators. Let g1, - -+, ga, 21, ** + , Dn be the canonical
coordinates for a classical system:

£ 0= 11 cre LT,

{g:, i} = 8455
1:’]' = ]_, cee M,

{qi) Qi} = {pi:pi} =0,
@

where {4, B} denotes the Poisson bracket between
A, B. [We think of the Poisson brackets as implicitly
defined by their formal properties. Then, from (2},
it follows that

§See C. Chevalley, Theory of Lie Groups (Princeton Univer-
sity Press, Princeton, New Jersey, 1946), Sec. VI, Theorem 2;
see also, for instance: P. M. Cohn, Lie Groups, Cambridge

Mathematics Tracts (Cambridge University Press, Cam-
bridge, England, 1961), Chap. VIIL.
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(428 _s425)

g 0D 0P O/’
Alternatively, this relation can be assumed as a
definition.] We define as a contact or canonical
realization & of the group G, a set of transformations
in the canonical variables

¢t =g, @ Py o PO, e, 0,

}’3‘: .‘:"pg((llr s Gy Pry :pﬂ{alx te ;ar)
homomorphic to § and leaving relations (2) in-
variant. A realization & which is not only homo-
morphic but also isomorphic to § will be called a
faithful realization.

The infinitesimal transformations of & can be
written as

{4,B} = 2.

&

®

¢t = g: + &a'{y., ¢:},

P} = p; + 8" {y., p;}.
The y.’s (r = 1, --- , r) are suitable functions of
the 2n canonical variables only. They are called
the canonical generators of the infinitesimal trans-
formations and are defined up to an additive
constant. We have now to satisfy the requirement
of homomorphism. Let us consider the infinitesimal
transformation G(sa)G(6b)G™'(6a)G*(8b) of the
group G, associated with the operator

14 éa” sV [X., X,l.

The corresponding transformation in the realization

@

& can be written, via the Jacobi identity, in
the form
q: = q; + Balr 6bl{{yn y)‘}: qi}r (5)
pi = p; + 8a” 80 {{y., »}, p:}-
Then, from (1) and (5), it follows
{ym yv} = C:vyr + dpn (6)

where the d,,'s are constants which may depend on
the particular realization.

Let us look at the operators {y,, « - - }: in a faithful
realization they are obviously linearly independent.
The same is not true in the general case. Since
however the nonfaithful realizations are faithful
realizations of the related factor groups, in the
present paper we shall confine ourselves to this
latter class.

Because of the symmetry properties of the Poisson
brackets and of the structure comstants c},, the
conditions

d.w = ""dvp ’

c;adrk + c;)\drp + c;pdrv = O
must be verified.

™
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We remark that the fundamental relations (6)
are formally identical with the commutation re-
lations of the infinitesimal operators of a repre-
sentation up to a factor of the group §. In particular,
by means of a substitution of the form

®

where the v,’s are suitably chosen constants, it is
possible to reduce the number of the nonzero d,,’s
to a minimum which is characteristic of the group G.
This may be done according to a method given by
Bargmann.® In particular this minimum number can
be easily evaluated by observing that substitution
(8) implies the following transformation on the d,,’s:

do = dpy + o7+ ©)

Indeed, if ¢ is the number of independent equations
of the form

Ye=> Yo + 72,

(10)

we can dispose of ¢ constants to adjust the values
of the d,.’s. If now m[m < ¥r(r ~ 1)] is the number
of independent d,,’s, the minimum number of d,.’s
is s = m — ¢. 8 is, for instance, zero for the rotation
group, the Euclidean group in # > 2 dimensions,
the homogeneous and inhomogeneous Lorentz group,
whereas it is one for the Galilei group and the
Euelidean group in two dimensions.

c;ﬂ"r = 0)

2. REDUCTION OF A GENERAL CANONICAL
REALIZATION TO A TYPICAL FORM

Two given canonical realizations of the group G
in the same number of variables, & and & will
be said canonically equivalent if a fixed canonical
transformation 8 exists such that symbolically

R'(a) = $- R@@)-s7". ¢3))

We shall show that, by means of a constant trans-
formation, any canonical realization may be reduced
to a typical form which allows one to obtain a very
significant characterization of all possible canonical
realizations of a given group G.

Let us consider & given canonical realization of §
in the 21 canonical variables ¢;, p;(5, =1, -+, n).
The r generators of the infinitesimal transformations
will satisfy relations (6). It will be seen that a new
system of canonical variables can be constructed, in
which the generators depend on a number of var-
iables not greater than the order r of the group G.
This result is contained in the two following the-
orems:

¢ V. Bargmann, Ann Math. 59, 1 (1954); see also Hamer-
mesh’s book (Ref. 1), Sec. 12/3-4.
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Theorem 1: A new system of variables

Q= O, - ¥ o O = Qulyn, -+ ),y
Bi= By, oo %)y s Ba= Bl o0 U
$= 3@y, = v, o0 Ly,

(12)
where 2h + k& = r, can be constructed which are

independent functions of the r generators yy, +-- , ¥,
alone and have the following pseudo-canonical
Poigson brackets:

{Q, Q) = (B0, Bi} = {Q4, T}
= {$:;, 3.} = {T,, 8/} =0,
{Q: Bi} = &y t,j=1--h;
¥ =1k, 2h 4k =r. (13)

The numbers & and % and the functional dependence
of Qi B, & on the y, depend entirely on the
values of the constants ¢, and d,, and not on other
features of the particular realization. On the other
hand, the choice of the variables is obviously
determined up to transformations leaving relations
(13) invariant. Precisely the variables & --- &
can be replaced by any k independent functions of
them, say & --- &, and the variables ;, PB; by
others obtained through a canonical transformation
involving the &, as parameters.

Theorem 2: A set of 2n canonical variables

Q' = Q.‘(Q, p)v Pi = P:‘(q: P)}

can be constructed which are functions of the
original variables ¢;, p; such that

ij=1,-,n

Q=2 , =0, P=P, - ,Ph=%,

Poy=31, -, Pass =34

{@,30) = (P, 3} =0;  4,j=1,--- ,n;
v=1,, k=1, 1<k (14

Here the number ! depends on the particular reali-
zation & and the choice of the ¥ --- T{ has to
be done in a suitable way.

. The first theorem is due essentially to S. Lie
and has been used in a different context as a part
of one of the proofs of the third fundamental
theorem.” The second one, as far as we know, does
not appear in the literature. We will give here the
proof of Theorem 1 in view of the necessary modifica-
tions suitable to our case and as an introduction
to the proof of Theorem 2.

* L. Bianchi, Lezioni sulla leoria dei gruppi continui fintti
di trasformazwm (E. Spoerri, Pisa, Italy, 1918).
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Proof of Theorem 1: Let us assume, for instance,
that at least one of the expressions ¢y, + d,, is
not identically zero. Then we put: P, = y,. We
consider next the differential equation

(W0} = X G+ dal g—‘;- =1 (@15

for a function ¥ = ¥(y, --- y,) of the generators.
We shall call £, a particular solution of (15).
Then we consider the following system of differential
equations:

{%lv ‘I,} = 0)

(16)
{’Dn‘l’} =0,
where ¥ is still a function of the y,. Since
{2y, (B, ¥} — (B, (Qu, P}
= {{Q,B}, ¥} =0 (17)

holds, the system (16) is a complete Jacobian system
and admits r — 2 independent solutions ¥, ¥z, -+ ,
¥.-». We note that such solutions are also inde-
pendent of P, and Q, because if a relation

F(‘Bh Ql, '//lr ¢’21 Ty ¢r—2) = 0 (18)
existed, we would have from (16)
IF/o, = —{B,, F} =0, (19)
aF’/a$l = {le F} = 01

so that relation (18) would involve the ¢y, ¥, -,
¥, only. We remark furthermore that, due to the
Jacobi identity, the expression {¥., ¥} is also a
solution of (16) so we can write

{‘I/a’ 'I’B} = ﬂoaﬂ(‘l’h ‘I/zn STty 'pr-z);

a,/3=l,~-,r-—2. (20)

If the ¢,5 are not identically zero, we may put, for
instance, P, = ¢, and look for a function Q, of
the variables ¥y, 5, -+ , ¥,_; which satisfy the
relation:

{Q,, B} = 1. (1)

By iterating this procedure we can keep on reducing
the number of variables, until we are left with a
set of variables having identically zero Poisson
brackets. We will denote them by &y, S, »++ , e
As to the values of k and h = 3(r — k), see Sec. 3.

Proof of Theorem 2: We put first of all
Ql = le e 1QRE Dk
P =

!
B
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and assume that a definite choice of the variables
8y, B2 oo, 3 has been made. Apart from ex-
ceptional values of these variables (we shall return
to this point in the following), it must be n > h.
If n = h the theorem is obviously established. Let
us assume that n > A.

Following a procedure rather more involved but
similar to the one used in proving Theorem 1, let
us consider the new system of differential equations:

{Q.’.#’} =0
{%ivﬁo} = 0

where now ¢ is a function of the variables ¢, p,.
The system is complete and so it admits 2n — 2h
independent solutions

iyj=lv"'vh' (23)

‘Px(q: D, w(q, D)y s eamanlgs D)-

Repeating essentially the same argument given
above it is possible to show that such functions
are also independent of the variables Q., B;. The
Sy, ¢ ¢+, 8. are then functions of ¢y, + «* , @an—os only
and not of the Q.’s and B,’s.

Let us now consider the system

{Slré} = e = {S(h Q)} = 0, (24)

where

P = Q(ﬂoxy cet 1‘p2n~2h)'

This system is obviously a complete one but the
equations are not in general all independent, since
the expressions &, --- , & may be functionally
dependent. We remark that indeed, owing to

3.8 = 2 {3.,%}5’5.

the number of independent equations in (24) is
given by the rank of the matrix ||{J,, ¢.}]]- On
the other hand, from the relation

a3,

{Sh ‘Pu} - ;a@p

it follows that the rank of the matrix ||{J., ¢.}|] is
identical to that of the matrix ||03./d¢sll,’ i.e., to
the number of independent &,. Let &, -« , 3 be
such independent &,. Equations (24) admit 2n —

{‘pﬂ» ‘Pa}

2k — I independent solutions that we can write
in the following way:
Sy S W, Waneni-ae

8 The rank of the matrix formed with the Poisson brackets
is invariant under any functional invertible transformation.
So, in particular, the determinant of the matrix formed with
Poisson brackets of the variables i, B;, ¢. and hence that
of the submatrix {|{ ¢, ¢g}l] is different from zero (cf. Sec. 3).
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Now let w,, -+ , w, be [ functions of the ¢,,
independent of the previous ones.

Then the Poisson brackets {34, w.}, -+, {$, wu.},
(u 1, --- , 1) are obviously not all identically
zero and it is easy to see that a function @, of
the variables &y, - -+ , S, @y, -+ -, w; exists such that

{th, 31} =1,
{Qh+1r 32} = = {th, 8‘1} = 0.

[The system of equations
{3(276} Tt = {S(l,®} = 01
®=®(0)1, crt, Wy, S}ly“' ;S(l)

is complete and admits [ + 1 solutions. Let them be:
4, 31) Sty 31- For a function Q = Q(ﬂy 8(17 ) Sl)
wehave {Q, 81} = (6Q/89) {9, Ju} = @, 3v, - - - Ju)-
9Q/a3d. So it is obviously possible to satisfy the first
of Eqgs. (25) while the others are automatically
satisfied.] Let us consider next the system of
equations

(25)

{Qh-*-l, é} = 0’ {311 é} = 0»
With@ = @(S(l, ttty \c}ly Wy, * wl) a‘ndlets(i’) Tty
Sy, wh, -+, ol be the independent solutions. A
function Q.. of the variables &, « -+, &4, b, + -+, W}
can be constructed such that
{Qh+2y 32} = 1’ (26)

{Qh+2; 3(3} = = {Qh+2,3(1} = 0.

The procedure can be iterated until we arrive to

the construction of new expressions Q.1, *-- , Qa+:
such that
{Qh+ur Qh-!-u'} = O u, u/ — 1 .o l. (27)
{Qh+u1 3’4’} = 6uu’;

We put Pi,. = §.. We are left now with the in-
variants 3., - -+ &, and the variables w,.
Let us observe that {@s.., Sis,} 0 =1,--- ,k—1;
u =1, ---, 1) is a function of &, -+, I only.
Then let us consider a function (S, -+, S,

Sis1y oo+, ) and look for the solutions of the
system
{th, 9} =0,
Qs @ 7 O @9
{Qsss, 9} = 0.

This system is complete and admits k& — [ solutions
that can be identified with the new expressions
Sty SHusy + o+, L. Finally we replace the variables

G. M. PROSPERI

Wy, * , Wonan—z; With new ones w!, «++ | Wi or_or
which are functions of them and of the &, --- ,
in such a way that their Poisson brackets with the
Qii1, -, Qu.: are zero, and we re-express these
last variables w/ in terms of canonical variables
@niret, * o Quy Pritsq, -+, P, closely following the
method used in Theorem 1.

3. PROPERTIES OF THE T'YPICAL FORM: THE
IRREDUCIBLE XERNELS OF A CANONICAL
REALIZATION

We want to illustrate now some of the results
implicitly contained in the last section.
First of all we can invert the functions Q, =

Ql(yl; Tty yr)) Tty S = \(}k(yli Tty yr) of
Theorem 1 and obtain
Y, = yT(Qly e rthsBl; e y%hyf}l) e )S(k)-
29
Then, from (13) we have
{yr’gt} = 0; t=1,--,k (30)

so that, in virtue of (4) it is apparent that the &, do
not change under £.

It is also easy to establish (see the following)
that the &, &, -«+ , §; are the only independent
functions of the generators y, which have zero
Poisson brackets with all the y, themselves. Thus,
they are the analogs of the invariant operators of the
ordinary representation theory: we shall call them
canonical invariants. As to their number, we observe
that the following property holds true: if 9,, 5g, - - -,
17 are 8 set of variables among which certain Poisson
brackets are defined and &, &, --- , £, are obtained
from them through some transformations, we have
084 965

. O A,B,a, b=1, ---

y m

3D

so that if det ||954/d7,|| is different from zero, the
rank of the two matrices {|{£,, £3}|| and ||{7n., s}l
is the same. Thus, in particular, the two matrices

{EAIEB} = {ﬂa; 776};

{yl’ yl}{yl) y2} ot {1/1,2/,-}
Wy n} Y2y w2} vevveenes
{y” yl} ......... {y” yr}
0 oY, + iz + o0 €Y. + di,
= Cglyr -+ d21 0 3 ceeereiaenans (32)
L S 0
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(D1, QL B} 190, S (0,%] [o01 ]

By, D) By, B o B S - o] =1 0 ©
............................................. I POy -
{81; Ql}{gu ‘Bl} {81) 31} {31: S(k}
............................................. (®) (o)
S D118 B -+ ( S S L J

have the same rank. Because the rank of the latter is obviously 2k, we conclude that the number k of in~
variants is given directly by r minus the generic rank of the matrix (32).

Let us now analyze the properties of the realization & of G (typical form) induced onto the new system of
variables @, P; laccording to our definitions & is canonically equivalent of &]. To this aim, let us summarize
the properties of the new system of variables in the following scheme:

1 II II1 v
Pi=P,---Pi= P ‘Bms&---%ms&}S(M,,.& Piisy -+ P, (34)
Q=90 =01 Qin s Qi Qisrer -+ Qn,

where the Poisson brackets between any two vari-
ables is one if they are on the same column and
zero otherwise. In particular we have

t{Qs’y 3l+v} = 681+v/api = 0;
‘{Ph£§£+-} = —631+v/aQi = 0; v = 1: e !k - l
(35)

i)j= 1) L,

so that &4, - -+, § are constants.

On the other hand, since they are functions of
the generators ¥y, --- , ¥, this means that the gene-
rators themselves are not independent functions in
the considered realization, but there exist & — I
relations among them. (We notice however that
no relation of the form 3 .., cy. = const can
actually exist among the generators y, in a faithful
realization. In such a case, the infinitesimal operators
{4, -~} would indeed be linearly dependent.)
Another way to express the above mentioned fact
is to observe that, owing to Egs. (29), it follows
that the y, are functions of the variables @y, -+ , @,
Py, oo, P only.

Let us examine some consequences of this result.
first of all, we have

{yﬂ Plﬂ-a} = 0; o = 11 i

{yth+l+s}=0; ﬁ=1,n.-,n_h_z’

s0 that the variables of the set Pyvy, +++ , Pisy,
Pyirsry, *++ , Poy Qh+l+1)_;" , @ do not change
wunder the transformation §.

Moreover, it is easy to see that the variables

-,n —h, (36)

Qi+, * *+ , @iy are transformed, in the neighborhood
of the identity, according to the simple law

Q}’n-u = Qh+u
- 60’1‘ 82!‘?(le Tty Q:‘n Pl! i

u:l’...,z,

C s Pn+x)/6Ph+u;
@7

which is a sort of translation depending on the
values of the other variables. The corresponding
finite transformations can be obtained from Eq. (37)
by means of a simple quadrature.

The most significant transformation properties
are those of the variables of the first set of table (34).
We shall call the transformations induced in such
variables, for every set of allowable fixed values
of the canonical invariants, an Zrreducible kernel of
the canonical realization.

‘We notice that, in particular cases, it may happen
to have n = h - [, then the fourth set of table (34)
is missing; or I = 0, then the second set of (34) is
missing. A particular interesting situation arises
when n = A, that is when the realization coincides
with an irreducible kernel. In general 2h is the
minimum number of variables for which we can
have a faithful canonical realization of the group g,
with the exception of some degenerate cases corre-
sponding to particular values of the invariants for
which we are on the boundary of the domain of
the variables £y, +-- , Q4 By, -+, Bo We shall
meet such degenerate cases in studying the canonical
realizations of the Galilei and of the Lorentz group.
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We will now make use of the concept of invariant
manifold in the phase space. Let us consider a
manifold of equation

5(¢g,p) = 0; (3%

it will be said to be invariant if every point in it
is transformed into another point of the same
manifold by any transformation of the realization
®. A necessary and sufficient condition for that
is obviously

{vn 5D} =0 (39)
or, using the variables of table (34),
{Q:, (@, P)} = 85/0P, = 0,
{P;, 5@, P)} = —95/9Q; = 0;

t=1--+h, j=1---h+1 (40)

This implies
F = F(Pus1, -+, Prs;

Qietnr, 5 Quy Prvrar, =0, Pa);

that is, & is simply function of those of the canonical
variables that remain unchanged under the reali-
zation Q. In particular, we observe that the only
independent functions of the generators that give
rise to invariant manifiolds are the functions &, =
Py, -+ ,St = Py

Extending a terminology due to Lie, we will
call intransitive (or transitive) a canonical reali-
zation which admits (or does not admit) invariant
manifolds. Thus, apart from the above-mentioned
exceptional cases, the transitive faithful realizations,
if they exist, are those for which n = h and cor-
respond to definite values of the canonical invariants.
As stated above, each of them is canonically equiv-
alent to a single, irreducible kernel. The nontrivial
intransitive realizations are those which contain
infinitely many irreducible kernels corresponding
to different sets of values of the canonical invariants.

It is apparent that the intransitive and transitive
canonical realizations are in some way the analogs
of the reducible and irreducible representations. It
is clear however that a strict analog of the reduction
operation, i.e., decomposition in direct sum of
irreducible subspaces, does not exist. Finally, as
regards the variables of the set IV of (34), it will
be apparent in studying the canonical realizations
of physical symmetry groups that they correspond
to internal variables of isolated systems.

M. PAURI AND G. M. PROSPERI

4. CHARACTERIZATION OF THE MOST GENERAL
CANONICAL REALIZATION OF A LIE GROUP

We have now to handle the somewhat inverse

problem, that is the construction of the most general
realization & of the group G. In particular we may
ask whether a faithful realization can be constructed
in which a set of invariants assume certain values
prescribed in their accessible domain.
- Let us consider, to this purpose, the functions
Q.(y), Bi(y) and J,(y) where the y, have now to be
considered as generic independent variables; we
have already noted in Sec. 2 that these functions
are constructed by using only relations (6).

Let us give fixed values for instance to 84y, +* -,
&,. We introduce a set of 2n variables @, P; repro-
ducing a table like (34), with the abstractly defined
Poisson brackets relations

{Qir Ql} = {P")Pi} =0, (41)
Q) P;} = 8.3 t,j=1---n.
The y, turn out to be functions of the variables
Q, -+, @, P, -+, Pu. Such functions will

satisfy relations (6), so, for the general theory
of transformation groups, they will be generators of
a group of canonical transformations homomorphic
to G at least in the neighborhood of the identity.
This group will be in addition isomorphic to §
and so a faithful realization, if the infinitesimal
operators {y,, ---} are linearly independent. That
amounts to requiring that no relation like

'y‘BM

’ § k)
(42)

IR VGRS A

'3‘1: :S(t;§z+1, ,§k) = 9(§l+1;

: ’Qh) g’Bh n

(here the symbols 5—3‘;+. denote fixed values of the
invariants) or, equivalently,

E)\ff"l/'—=0‘ i=1¢---h,

T=1 agl
C 3y, .

A = =0, =1--+h, 43
; o j (43)
Zr:)\,ay’=0, u=1--1
Tm=1 63‘14

holds true.

Relations (43) must be satisfied for any value of
the variables ., B;, Q.. Alternatively, we may
consider together with (43) the relations obtained
with the higher-order derivatives. In this way we
get a set of linear equations for A,. As it is well
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known, only a finite number of these are inde-
pendent; precisely in any case, it is sufficient to
consider the equations formed with all the deriv-
atives up to order r — 2k — [ + 1 (see for instance
Ref. 7).

Let us then consider the matrix

(g ow Oy w8y
a0, 9B, 007 00, 0B, a3
Y2 . Y, °ys 0%y, . ak-lﬂyz
090, 9P, 901 090, 9B, R R YY)
3y, o iyj_azy' azyr ak—ux%
EYS M TR ToH TONE T NRRRE T LS
Clearly the condition for a relation like (42) to

exist ig that the rank ¢, of (44) be smaller than r.
Thus, conversely, the condition under which a
faithful realization may be constructed in which
the invariants 41, ++ , 3 have fixed values, is
expressed by ¢; = .

We observe that, in particular, for I = k (no in-
variant fixed) the matrix (44) becomes the Jacobian
of the transformation (y.) — (Q;, PB;, T,) which
is necessarily different from zero, so that ¢, = r.

On the other hand, if g, = r, because obviously
go < qi, all the realizations constructed by the
above procedure are faithful (that is faithful reali-
zations exist which correspond to invariants fixed
in an arbitrary number and in an arbitrary way).
In particular, only in this latter case all the in-
variants can be fixed: that gives rise to transitive
faithful realizations, or, what is the same, the
irreducible kernels give faithful realizations,

As illustration of the above arguments, let us
consider a few examples:

(1) Assume the group § to have an exceptional
subgroup of order m, that is a subgroup the elements
of which commute with every element of the group
g itself. The group G is obviously not semi-simple.
In this case m invariants exist which are independent
linear combinations of the y,, so, certainly, no more
than & — m invariants can be figed. [One might
think that case (1) is the only one in which un-
faithful realizations of the kind considered here can
actually occur. However, this is not the case. This
and other open questions will be dealt with in
a succeeding paper.]

(2) Suppose next § to be a simple group. In this
case only faithful realizations exist and thus all the
invariants can be fixed.

(3) Let g be now a semisimple group. The same
conclusion holds about the invariants as in Case 2.
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To see this, let us first consider the realization & in
which no invariant has been fixed. As seen above,
& is isomorphic to G and therefore is itself semisimple.
Let us now take into account the realization &
(not canonical in our sense!) induced by & into an
invariant manifold corresponding to certain definite
values of all the invariants &, - - - , &,; we mean here
the transformation laws for the variables Py, + -, P,
Qi -+, Qu Qrsr, ++* , @iy corresponding to those
values of the &, that is the transformations (37)
and the transformations of the irreducible kernel
labeled by such fixed values. Moreover, let us con-
sider the realization &, formed only by the irreducible
kernel. From general properties of transformation
groups theory, we know that & is isomorphic to &
unless at least one infinitesimal transformation of &
exists which leaves unchanged every point of the
manifold onto which & is induced. This may happen
in our case only for exceptional values of the in-
variants such that the Jacobian determinant
3y/a(L, B, &) be identically zero with respect to
£, B;. Apart from these exceptional values, & is
isomorphic to § and so a semisimple group itself.
Now R, is certainly isomorphic to &. In fact,
had an (invariant) subgroup existed in &', corre-
sponding to the identity in' K, this would necessarily
consist of a set of transformations leaving invariant
the variables of the irreducible kernel. On the other
hand, due to the particular form of transformations
(37), this subgroup would necessarily be an Abelian
invariant subgroup. Therefore &, is isomorphic to G.

The remaining questions to be answered are now
the following:

(i) are the realizations considered above all
distinet?
(ii) are they inequivalent?

As to the second point, we find that canonical
realizations corresponding to a different choice of
the invariants to be fixed or to different values of
such fixed invariants, if distinet, are inequivalent.
This is a consequence of the fact that a canonical
transformation in the variables @;, P; does not
change the values of the fixed invariants &y, +- -,
% and can modify the values of the remaining
invariants in a prescribed way. All this can be very
easily seen for an infinitesimal canonical transfor-
mation, remembering that we have, being G(@, P)
the generating function,

{G(Q,P),S‘,”} -'=0; v=1, -

(45)
{GQ, P), 3.} = 9G/0Qu..; -
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A similar conclusion obviously holds true for ca-
nonical realizations corresponding to different values
of the d,’s since a canonical transformation does
not change the Poisson brackets. These results are
strictly analogous to well-known properties of the
unitary ray representations considered in quantum
mechanics.

The first point requires a more detailed answer.
We assume that the d,,’s have already been reduced
to the minimum number. In order that two reali-
zations with generators ¥.(Q, P) and y/(@, P), in
the same number of variables, be nondistinct, we
must have

{y: - yn Qo} = {y-n’- - yr)Pi} = 0;

'iyj::l"" (3 (46)

that is ¥ = y. + «,, where the a,’s are constants
in the given realizations.

Moreover, if the ¥.’s and y!’s have to satisfy the
relations (6) with the same values of the d,,’s, the
conditions

Coocte = 0 47

must be satisfied.

Let us denote by «, --- , «f® the linearly inde-
pendent solutions of Eqgs. (47); obviously p = r — ¢
(cf. Sec. I). A necessary and sufficient condition
in order that identical realizations exist corre-
sponding to different fixed values of the invariants
Sy, ++-, &, is that the generators y, assume the
form

Y. = gf(gy sB)\(}v+1v tte ’S(k)

e e 9.

=1

More generally, we shall assume that we have

Y. = gr(gr iBr 31-1-1, e vs(k)

+ 23S, -

=1

3, (@8
where the &/ are » arbitrary independent functions
of all the invariants. We shall also assume that, in
Eqgs. (48), » has the maximum possible value.

[For given solutions ,(y), B;(y), F:(y) of the
problem of Theorem 1, let us write the inverse
relations (38). Then, consider the expressions

y: = yr(’Dl SB: 8‘3: 3‘3: ttt 831 3,+l, et S(k)
+ ,Zai‘)S‘:(gn v rgk):

=1

(48')

M. PAURI AND G. M. PROSPERI

where 32, --- , §0 are certain fixed values of the
invariants. The y’ (48') satisfy the relations (6)
with the same values of the d,.’s. Now, if the »
invariants &/, - -+ , & can be chosen in such a way
that the Jacobian a(yJ, - -+ , ¥)/3(QPF) in (48") is
not identically zero, we can consider the Eqgs. (48')
as an implicit definition of certain new solutions
Qzl(yb R yr)y ‘B;'(yl; ] yr); S(:,(yl) Tt yr) of
the problem of Theorem 1. For these new solutions,
Eqgs. (48) evidently hold if we put

g‘f(g,,’ SB”; ::-1; ) 321)
= y,(éD.”, B, S(gy oot 3‘3, Very v ’ Sl’c,)]

Equations (48) enable us to recognize easily whether
two realizations are distinet or not. First of all we
remark that the invariants are divided into two
classes, namely 3., *+¢ , S and &, --- , /.
It is clear that two realizations corresponding to
different sets of fixed invariants of the first class
or to different values of the same set of this same
class are certainly distinct. Then, let us restrict
ourselves to realizations for which a common set
of invariants is fixed in the first class, with the same
values. Among these, let us consider a realization
in which # relations exist among the invariants of
the second class. We can write such relations as

\(}1,- - V1(31’7+11 te 135) = O

3= VolSrers =+ ) = 0;

Then, all other realizations in which the expressions

7<v. (49

Ur=31 — Vil@rs1y o+, &)
Un = S(:) - Vq(8;+l) Tty 8(1) (50)

have fixed arbitrary values are identical. This,
obviously, includes the simple case in which &4, - -,
& have arbitrary fixed values.

An interesting physical example of the preceeding
situation is found in studying the canonical reali-
zations of the Galilei group. We have in this group
two invariants: one of the first class which represents
the square of the intrinsic angular momentum, the
other one of the second class which represents the
internal energy of the physical system. We shall
see in a future paper that the canonical realizations
of the Galilei group labeled by fixed values of such
latter invariant are the canonical realizations corre-
sponding to the free particle, the free rotator, and



CANONICAL REALIZATIONS

the free spherical top. Giving different values to
this invariant amounts only in changing the zero-
point energy of these systems and we get identical
realizations.

5. CONCLUDING REMARKS

Summarizing the results obtained, we can give
the following rules to build up the most general
faithful canonical realization of a Lie group G.

First, one takes the Poisson bracket relations
among the generators y, and reduces the number
of the nonzero d,’s to a minimum. Then, one
constructs the variables Q, - -+, Qu, Py, -+, By,
Sy, o+, 8 Next, one prescribes definite values
for some of the chosen invariants according to the
criteria of Sec. 4.

When this is done, one introduces a set of new
variables @,, -+ , Q,, Py, -+, P, with abstractly
defined Poisson brackets, achieving a scheme like
the table (34) of Sec. 3. Finally, one performs an
arbitrary constant canonical transformation.

To conclude, we would like to stress some aspects
of the theory that could be interesting also for
representation theory and therefore for quantum
mechanics.

Precisely, we point out that if in Eqgs. (6) the
Poisson brackets { } are replaced by the commu-
tators and the y,’s are interpreted as the infinitesimal
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operators of a projective representation of G, the
expressions (Y, *v , Ye)y o0, Sulyy -0, ),
when attention is paid to the order of the y,’s,
become the invariant, operators. Therefore, our pro-
cedure can be clearly utilized for the determination
of the number and for the actual construction of the
invariant operators of any Lie group §. This is of
special interest in case G is not a semisimple group.
The semisimple groups are indeed the only ones for
which a general method was known up to now (see
for instance Ref. 9).

In the same order of ideas, the variables Py, «- -,
Bs or L, -+ , 0, furnish directly a complete
system of commuting observables acting within the
irreducible representations. However, the analytic
structure of such quantities is generally much more
involved than that of the invariants and the ques-
tions of order may become essential ones. Actually,
some of the corresponding operators might fail to
exist.
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The formalism of S-operator theory is generalized to apply to all low-spin particles with particular
emphasis on quantum electrodynamics. It is shown that only direct (nongradient) interactions are
allowed, when spinor fields are involved. The Pauli interaction is explicitly shown to be forbidden.
Problems of gauge invariance are discussed and commutation rules between the interpolating quan-
tum fields and 9,4,%(z) are derived. Finite S-matrix elements are easily calculated with complete

convergence at each stage of the calculation.

I. INTRODUCTION

N a previous paper,’ referred to hereinafter as I,
the quantum theory of spin-zero chargeless par-
ticles was developed in terms of functional deriva-
tives of the S-operator with respect to the free
fields. It was shown that the equations

S' 58/ 6z, -
= (="K, - - Kpole(z) - o(xn), (L1)

together with boundary conditions determined the
theory. [Here 8/6x = /8¢, (x).] The n = 0 part
of this equation gave generalized unitarity® (uni-
tarity off the mass shell); the n = 1 part defined
the interpolating field,® ¢(x), while the n = 2 part
defined the dynamics of the quantum theory. The
parts of (I.1) with n > 2 were derivable from the
n = 0, 1, 2 parts and thus said nothing new.

The purpose of this paper is twofold: first, to
generalize the formalism of I to the interaction of
arbitrary low spin particles (spin 0, 4, and the
photon), and second, to examine the special prob-
lems of gauge invariance in this framework.

In principle the formulation of quantum electro-
dynamics requires many more equations than does
the formulation of scalar field theory because in
quantum electrodynamics there are three fields in-
teracting instead of one. In practice, however, it is
possible, by a judicious choice of notation, to write
most equations in a form that is independent of
the type of field involved. The best notation for
abbreviating quantum electrodynamics is discussed
in Sec. II.

The calculus of functional derivatives with respect
to free fields was discussed in I. This calculus is
revised and generalized in Sec. III. In Sec. IV the

0%
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dynamics of quantum electrodynamics is formulated
and discussed. Secs. V and VI are devoted to prob-
lems of gauge invariance. A sample calculation is
performed in Sec. VII just to show the simplicity
of this formulation.

II. NOTATION

In quantum electrodynamics one deals with the
electron field ¢ (z), its adjoint ¢¥(z), and the photon
field 4,(z). We let ¢(z) stand for any of these
three fields and we write ¢, for ¢(x;). If ¢, = ¢(z.),
we say ¢ ~ F, while if o; = §(z;), we say i ~ F,
and if ¢o; = A,,(x:) we say ¢ ~ B. This can be
written briefly as

¢ = (Au@), ¥(2), ¥x) as ¢ ~ (B, F, F) (IL1)

and the adjoint operator can be written

20 = (Au(z), ¥z, ¥(z)) as i ~ (B, F, F). (11.2)
In the following, any triplet will refer to the order
(B, F, F), so we shall hereafter omit the phrase
“as 1 ~ (B, F, F)” leaving it understood.

The differential operators K, are defined as

K. = (O; —8 —m, =3 +m). (IL3)

Here 9; = 4,9/3z* and 9, is the same as 9, except
that it differentiates to the left instead of to the
right. The free field equations can then be written
in the concise form

Ko = 0, (IL.4)
where
K :“Pin
=(O iA;i:(x-‘): (“5-' — m)¥ia(zs), ‘pin(xi)(_.éi + m)).
(1I1.5)

It is convenient to introduce differential operators
K that are complementary to K,:

R.i=(Q,—8 +m —3 —m). (IL6)

376
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These operators are defined so that

KK, =0; — m: (I1.7)

with m; = (0, m, m).
The homogeneous A-functions, A(z; m.), will be
written simply as A(xz;):

Alz)) = (D(x), Alz:; m), A(z;; m)) (11.8)
so that
KA(z) = (D(z.), —S(z.), —8(—=z.)) (1I1.9)
and
K.R.A@) = 0. (11.10)

The inhomogeneous A-functions are defined by
Ax(z) = 6(x)A(2),
B(z) = —O6(—2)A),
Ao(2) = 8(x)A.(2) — 6(—2)A(2)
so that
R Ax(z:) = (Dr(zs), —8x(@:), Sa(~2)),
KA (z) = (Dalzs), —8alxs), Sa(~2)),
KiAc(z) = (Dolz:), —8Se(zs), Sc(—22)-
These inhomogeneous A-functions satisfy

KiKiAR(xi) = KiKiAA(xi) = KiKeAc(x.') = —§z).
(11.15)

(1I1.11)

(11.12)
(11.13)
(I1.14)

Next we introduce the symbols
0 = (1) 0) 0): Oir = (0: 1’ 0)) Oir = (0; 0; 1)’

(11.16)

E&r = 6.'1! hand 6”7' = (0, 1, —1), (II.17)
8 = 8uiudindin + dirvir + 8ipdip, (11.18)
3: = 8‘““5;35,-3 + 5.‘16,‘# + a.‘p5,~p. (II.lg)

With this notation the (anti) commutation rules
for the free fields take the form

[0, ¢y = —i8KA@: — 2).  (I11.20)

Here o,; is a sign subscript: it is — unless both

i and j refer to F and/or F in which case it is +.
Finally, the functional derivative with respect to

the free fields will be written as §/6z; meaning

8/0pi™:

_ ( 8 8 ) )
o, 8AR(z) " iz’ 8Pi(x)/’

b _ ( ) 3 ) )
8% 6A;i:(xi) T 8dia(zs) T dial)/”
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The functional differentiation with respect to
spinor fields is always a differentiation with respect
to a particular component of the spinor field. We
shall not, however, put in the spinor indices; these
indices can always be recovered from an equation
by remembering that a spinor index maintaing its
association with a given space-time variable and
by remembering that a functional derivative with
respect to a spinor transforms like an adjoint spinor.

II. FUNCTIONAL DERIVATIVES
A. The Simple Case
The functional derivative of a normal product of

field operators is easy to define; one need only take
account of the anticommutation of fermion fields:

(8/8x) 0im(y1) -+ @ialyn):

= Z 3@i—y;) 8i(= D" o) -+ Aj -+ 01a(ya)
! (IIL.1)

(The symbol A;;...; is used throughout to indicate
that the sth, jth, --- , kth terms of a product or
sequence are absent.) Here P,; takes account of the
anticommutation of spinor fields:

Py = lecr] {1 > |e,,,,|}.

This definition gives functional differentiation from
the left.

(I11.2)

B. The 91-Operator

It was demonstrated in I that functional dif-
ferentiation does not, in general, commute with
space-time integration or differentiation. As a simple
example we note that

(8/5z)K ;" # K(3/b2)0i"

unless both sides vanish. We should like to be able
to interchange the order of functional and space—time
differentiation somehow. To accomplish this we de-
fine an operator 9 as follows: 9f(z, -+ z.) =
f(z, -+ x,) minus all parts of f that are of the form
K®K8(x; — z;)9(z: « -+ )], with p and ¢ non-
negative integers and p + ¢ = 1. We call 9tf the
primitive part of f.

It is now easy to see that functional differentiation
will commute with space-time differentiation when-
ever the 9l-operator is present:

]
3y 0 - KB o @)

= f)'(.Kl "'K"iG(xl "'xn)'

5 (I11.3)
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In particular we have

S.LK: a‘pin(x)
oy
= MK, 8x —y) = 0. (111.4)
Finally we define the functional derivative of a
functional of the form

s
8’!/ z¢in(x) - 5—y sz‘Pin(x) -

Flfl = g‘/d‘xl eoo d'z,
X falzy <+ ¢ 2.) () ++* 0ial@a) -
Since a functional is equal to its primitive part,
Fif] = F[%f], (111.5)

we can avoid ambiguities by defining the functional
derivative of a functional as follows:

SFf] _ SF[9Y]
& 0yq
= é "; f d'z, + - A I N(2y - )]

X oy — &) §,(=DT i - Ay - @™

The -operator has some useful properties that
should be noted. First it is a projection operator,

YNy = Rf. (I11.7)

Next, if we write the 9-operator that is to be
applied to a generalized function of the variables,
i, v, Loy a8 N(Ty c 0 T)5

9f(x -+ z)f(x (I11.8)

then the product of two primitive parts is a primitive
part,

..-xn)sm(xl ...x"),

[3tfllog] = (fy), (II1.9)
ie.,
[z, -+ z)f(@y -+ 20U < - - Ydg(mn - - - Y)]
=0y * Tty o YudF(@1 -0 2)IY -0 Ym)-

Hence the multiplication table for the 9-operators is

ﬁ:ﬂ‘(xl cre 2'.n.)sz'(yl te ym) = EJZ(xl v ym)

(111.10)

From this it follows that if F and @ are functionals,
[RF][NG] = WWFG), (I11.11)

where we have written %F for F[9tf]. The validity
of (II1.11) rests upon the fact that the contractions
of the free fields, —7A.(x — y), do not contain any
four-dimensional é-function singularities. This would

 Tu Y
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not be true in general if time ordering were intro-
duced:

(T (Fe@)]+ = [TUe(@)e)]+ # Rle@)e)]+-
C. Identity of Functionals

We remark that the fact that two functionals
are equal does not imply that their functional
derivatives are equal. If it happens that §"F/éx,
coo bz, = 8G/éxy -+ bz, for all n, we say that
F and @ are identical and write F = G. From our
definition of functional differentiation it is clear that

F=3xF (I11.12)
so that
0| 8°F/ 8z, -+ oz, |0)
= Wz, - 2a), n=20,1,2,---. (I11.13)
IV. DYNAMICS

A. Formulation

One assumes the existence of a unitary operator,
S, that transforms the initial state vector into the
final state vector. Qur first axiom is that S is a
functional of the free fields ¢;.(x). This axiom, plus
Lorentz invariance, is exactly equivalent to the sub-
stitution law.

With the S-operator a functional of the free fields,
one may calculate its functional derivatives. Thus
one is able to define the current associated with a
particular type of field by

8" 88/8%: = ij(x.). (IV.1)

The corresponding interpolating quantum field is
therefore defined up to a boundary condition by

S' 88/88;, = —iK.p;. (IV.2)

We complete the definition of the interpolating
field by taking the usual asymptotic condition* at
t = — =, By integrating (IV.2) we have

t+ 08

8E;
(Iv.3)

Equation (IV.3) defines both the interpolating
fields and their adjoints. If we demand as our second
axiom that the adjoint of an interpolating field be
related to the interpolating field in the same way
that the adjoint of a free field is related to the
free field, then this imposes a restriction on the
S-operator:

o(x;) = pin(®:) — % f d't.K; Az, — £)8

¢ H. Lehmann, R. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955).
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8" 58/8z, = —(58"/6%,)8.

This equation expresses the form invariance of the
interpolating field under charge conjugation. Equa-
tion (IV.4), together with unitarity, implies gen-
eralized unitarity:

S'8 =88 =1.

Ivay)

(Iv.5)

Next let us discuss the basic dynamical postulate
of this formulation. It follows''* from the asymptotic
behavior of the interpolating fields that ST6"S/éz,
«++ 8z, is the same as (—9)"K,; --+ K.(¢1 - @n)s
apart from possible terms that vanish on the mass
shell. From (1I1.8), we are led to think that

8' 5°8/8%, -+ 88, = (—)"RK, -+ Kulon - @as

(IV.6)

is the correct form of the dynamical postulate, but
this would be postulating too much since the n =
0, 1, 2, parts of (IV.6) will completely determine
the higher functional derivatives of S. Thus we adopt
as the basic dynamical postulate the equation of
identity,

S? 628/6151 63.‘2 == (_l.)mesz(lpl (Pg).q.- (IV.7)

To conclude this section we discuss two con-
sequences of (IV.7). First it will be shown that
(IV.6) is valid for all n, and therefore the dynamical
axiom and generalized unitarity are consistent with
the definition of the interpolating field. Secondly,
we shall rewrite (IV.7) in terms of the currents
to obtain a particularly simple functional differential
equation.

B. Proof of Self-Consistency

Equation (IV.6) is proven by induction: apply
3/8%,., to (IV.6) to get

8" 6"18/ ofpey + 0+

= (_i)”lK»M(PnumKl M Kn(‘Pn e ‘Px)+

-+ (_i)”mKl A Kn Z (‘Pﬂ i

i=%

L e
8% ns1

'991) .
-+

(Iv.s

From (IV.3) and generalized unitarity we have

s

aa-:n-t-l

= 5(1\' - mn-u) 5:;-1»1 - ifd4£iKi Aﬂ(xé - Ez)

¢ 88 + 88 tf_S__]
X [S 65;::4'1 651 - S 53-;1;1»1 S 5?; :

From (II1.11) and (IV.2), it is clear that K¢ = Ko,
g0 that we may write

(IV.9)
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v 'S + 88 188
S OFnsy OF: 0T i1 8 ok

= nﬂK"{o(Ei - 33»+1)[‘Pn+1: ‘P(Ei)]n-a-:.t}- (IV-IO)

‘When this is substituted into (IV.9) we may integrate
by parts with respect to the differentiation in K,
and the 8(¢; — z,..,) and Ag{z; — &) ensure the
vanishing of the boundary terms. This gives us the
result

6‘196/ 08 psy = (s — $n+1) 5:‘”1
-+ iﬂanﬂ{B(xs - xn+l){§9n+1) ‘Pi}nq-x.‘}- (N‘ll)

Next wenote that K, 10, 9K, - K (gn - 01)s =
NK; o+ K, 1@ni{en -+ @1). beecause of (IIL.11).
Thus when (IV.11) is substituted into (IV.8) and
the terms are rearranged, we get

Sf B"HS/&E»H **
= ('“'5)"“911{1 v Kai(@ner w0 ‘Px)-h (IV.12)

This completes the proof that (IV.3), (IV.5), and
(IV.7) are self-consistent.

M 6:&1

C. The Projection Operators

In Sec. (IV.D) it is seen that the dynamical
functional differential equation for the S-operator
may be written in a very simple form in terms of
a set of projection operators. Define

P, = KK, [6(z, — xl)KlKﬁAR(xl — E)Au(z — £)],
(IV.13)

Py = K1K2[0($1 - -'Ca)K1K2AA(x1 - £1)Ak(m2 e Ez)],
(IV.14)

P, = KK, [6(z; — xl)KleAR(xl — E)A(z: — £)],
(IV.15)

P, = K.K,[8(z, — ) K, Ko A(z, — £)Ae(za — £)].
(IV.16)

The multiplication of these operators is defined by
PP; = f d't, 6P (zs; EE)P (ks nye). (IV.17)

It is then easy to prove that the P,’s form a complete
set of orthogonal projection operators:

P,P; = 8P,

ZP“"—_-I.

.

(IV.18)
(Iv.a9)

Here the unit operator is 8(z, — £)8(z2 — &).
We shall use the abbreviation P.g(z.z,) to mean
the expression

f &t 6P (02s; EE)IEE).-
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The complete set of eigenfunctions of these pro-
jection operators is not known, but the solutions
of P4,A = 0 and PzR = 0 can be listed. We examine
the first of these two equations in some detail, the
solutions of the second equation then being obvious.
Using the formulas

E. PUGH

1 e
Auzs) = 2n)* f P+ m — (po — o) (Iv.22)
and writing

A7 _dk e o
0(:1:) == 27ri ‘/l_w k — iee 3 (IV.ZO) A(:l:l, xg) = fd4 X d4pzl(p1, pz)e"‘ -zl+|p.-zn, (IV.24)
_ 1 d'p e
Az = (2m)* f P’ + mi — (po + ¢’ (V2D e have
® dkKT(Z’l - k)KT(pz + k)Z(pl — k,p; + k)

PAA - K217f§2 f d4p1 d‘pg eip;z,-&ﬂhz,

Here we have written (p, po — k) as (p — k). Note
that all the explicit poles in the integrand of (IV.25)
are in the upper half k-plane. By closing the contour
in the lower half k-plane, the integral will vanish
if A(p, — k, p. + k) has no poles in the lower half
plane. (The possibility that 4 might have poles in
the lower half plane and zeros in the upper half plane
at the positions of the explicit poles is ruled out
by noting that A(p,, p.) would then be zero.) A
further condition on the integrand is that it is
permissible to close the contour. This means that
K™(p, — K)K™(p, + k)A(p, — k, p. + k) must blow
up less rapidly than k*. Using (IV.23) we see that
A(p, — k, p. + k) must blow up less rapidly than
k to the power 2 + 8,5 + 8,5 = 2(1, 2).

It is now obvious by inspection that R is a solution
of PR = 0 provided that B(p, — k, p» + k) has
no poles in the upper half k-plane and blows up
less rapidly than k to the power 2(1, 2).

Finally we examine the simultaneous eigenfunc-
tions of P, and Pg:

P.b = Ppb =0, (Iv.25)

From the above discussion it is clear that b(p; — £,
p: + k) can have no poles in the whole k-plane
and must blow up less rapidly than k to the power
z(1, 2). Note that because of the completeness of
the projection operators, b satisfies

(P, + P)b = b. (IV .26)

Then because of the homogeneous A-functions in
P, and P,, b must depend on the times only through
some derivative of 8(x? — z2). Thus & has the form

bp, — k, p. + k) = 37 + P2)E(Dy, P2y P — k).
The analyticity of b then implies that & is a poly-

e b= F M — (@ — & + i07[p2 - 72 — (2% + k — 4]

(Iv.25)

nomial in (p} — k) of degree less than z(1, 2).

Therefore the general solution of (IV.25) is
S O S

b(z,, 1) = Z oz " [8(z,

n,m

xg) gmﬂ(xl ’ x2)]
(IV.27)

with g(z,, z,) an arbitrary distribution and with n
and m restricted by

n+m<24 85+ 85.
D. The Current Equation

(IV.28)

If we eliminate the interpolating fields from the
dynamical equation, (IV.7), by substituting (IV.3),
the resulting equation for the S-operator is

+ &8
3z‘([>A + PR)S 5:221 axz
_ t 88 + 68 t 88 Lt 88
= SZ[PRS >, S o, 012P4S o, S _le:l'
(Iv.29)

Using generalized unitarity this becomes

F S
wp, + P 2 (s 25)

1 38
0z,

1 88

6x,],,,' (IV.30)

= —%PA[S i S
According to (IV.25), the general solution of this

integral equation is

5 t 65) -
—5351 (S _63:2 = —19b(z,, x.)
+ 88 + 88
- E)’(.PA[S o, ’ S sz]. (IV.31)

These equations may be rewritten in terms of
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the currents defined by (IV.1). Equation (IV.30)
becomes

P4 + Pg)dj/ 8%, = —iT P4, Jo)es,  (IV.32)
while Equation (IV.31) becomes
8jo/ 88, = (2, T2) — TP [, Jolows- (Iv.33)

V. SUBSIDIARY CONDITION

Let the free photon wavefunctions be denoted by
the positive energy function f5(z):

Ofx) = 0, p=123,4anda=1,2,---.
v.1)

The subsidiary condition

afulz) =0 (v.2)

ensures that in free photon states the scalar and
longitudinal photons occur with the same amplitude.
Photon state vectors are constructed by use of the
creation operators

A = =i [ @afi@) AL,
[Here {009 = fog/ot — (9f/dt)g.] As a consequence
of the subsidiary condition all state vectors satisfy

3 Ar M (2)d,, = 0, (V.4)

where the superscript (4) denotes the destruction
operator part of a free field.

(V.3)

VL GAUGE INVARIANCE

The subsidiary condition ensures that scalar and
longitudinal photons make no contributions to ma-
trix elements of the form ({2, ®#). In order that
they make no contribution to matrix elements of
the form (®{, S®{®) it is necessary and sufficient
that such matrix elements be invariant under a
gauge transformation of any one free photon wave-
function:®'®

fu@) = fi=) + 0.442), (VI1.1)
with A,(z) a positive energy solution of
OAfz) = 0. (V1.2)

This gauge invariance means that the matrix ele-
ment would have the same value if the photon wave-
function had no scalar and longitudinal parts. An
alternate, but equivalent,® requirement is that the
S-operator should be invariant under a gauge trans-
formation of the free fields:

s R. Pugh, Ann, Phys. 30, 422 (1964).
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Al(@) — Al() + 9,A(), (VL3)
¥ia(Z) = ¥1a(T). (V1g)

Here A(z) is a real solution of (IV.2) whereas A,(z)
was a positive energy solution.

With the notation §/8y" =
the operator

3/8A(y), we define

= [ dyaaw 2 (VL.5)
oy

Under the gauge transformation, (IV.3) and (IV.4),
any functional F transforms according to

F— F' = ¢F. (VL.6)

The gauge invariance of the S-operator, S8’ = 8,
implies that
M =0 \2%))
and this, in turn, is equivalent to the statement

[0,4,°(z), 8] = 0 (VL.8)

since A(z) is an arbitrary real solution of the Klein—
Gordon equation.

It is possible to impose a stronger condition on
the theory than the simple gauge invariance of the
S-operator. This stronger condition is that the inter-
polating fields shall transform according to

Ax) - Alx) = A,@x) = A x) + 3,A(), (V1.9
W@) > P(@) = ) = ¢ I Y() (VI.10)
under the gauge transformation, (IV.3), (IV.4), and
(Iv.6).

First consider the transformation of the photon
interpolating field. According to (IV.9) we have

= 1

A@+oa@ = D4 [an - a,

A2
8F .- O
Since A(x) is arbitrary, this equation must be
satisfied term by term. The n = 1 part gives
84 ,(x)

oF

X 8 AE) <+ Ouy AlEW) (VL1

o4 = [ % 2.40)

i [ #eo.u) ai4®), 4.@] (VLI2)

—i f AR 900, A0E), A @)

In the last step we made use of JA = A4} = 0.
By a similar argument the left side of (VI.12) may
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be written®
9,A() = o, [ dA® "o DG — 2
(VI.13)

= — [ #ea® "o 5, D& — o).
Thus we have
[ #5® 510,450, A@1+5 0, De- ) -0,

and since A is an arbitrary solution of the Klein—
Gordon equation, this implies

[0,4,%8), 4u®)] = ~i 9, D¢ — 2).  (VI.14)

This commutation relation is sufficient to ensure
that all terms in (VI.11) with » > 1 vanish since
the first functional derivative is transformable to a
c-number, all higher derivatives vanish. The trans-
formation 4, — A, + 9,4 is therefore equivalent
to the commutation relation (VI.14).

Now consider the transformation of the y-field.
Expand both ¢ ****y(z) and e'¥(z) and compare
terms:

e — . e A n o n

R R CE )
The n = 0 part is satisfied automatically. We take
the same steps as in (VI.12) and the n = 1 part
gives

—teA(z)¢(x) =

(VI1.15)

[ #c o 20

I

—i [ %A@ "a.00.450), W),
(VI.16)

Using (VI.13) we see that

i [ dea® 818,420, v@)]
— ¢ DG — DY@} = 0
so that
[0,4°®, ¥@] = ¢ D — Y. (VLLD

One can now easily see that (VI.15) is satisfied for
all n: using (VI.17) and (VI.13) we have

Mp(x) = —ieA(@) (@),
which makes (VI.15) obviously satisfied.

The commutator of ¥(z) with 9,42(¢) is ob-
tained from (VI.17) by taking the Hermitian adjoint

[0,4,°9), ¥(x)] = —e Dt — 2)¥z).  (VL19)

. 8 8, always differentiates the first possible variable on its
right. Thus mn the first line of (V1.13) 8, = 3/dz,, while in
the second line, 8, = 3/9%,.

(VLI.18)
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Hence in general we have

[6,‘Ai“(£), e] = —18;5D(E — z) + ee;p D(E — z)0:.
(VL.20)

The commutation rules between dud *(¢) and the
interpolating fields impose restrictions on the inter-
polating fields and therefore on the S-operator. Using
(V1.20), one easily arrives at the result

[6,_‘Ai“(£), 528/5331552] = “—emSKIKZ{{:EIFD(E — )
+ eng(E - -’372)](?91&’—‘2)4»}- (Vl-zl)

This is the S-operator form of the Nishijima® gen-
eralization of the Ward-Takahashi relationship. It
is equivalent to the commutation rules (VI.20) and
to the gauge transformations (V1.9) and (VI.10).

So far we have merely assumed that (V1.9) and
(V1.10) were possible; to complete the proof of
gauge invariance, one must prove that the assumed
gauge transformation is consistent with the dynam-
ical parts of the theory. Such a proof was given in
an earlier paper® and need not be repeated here.
We remind the reader of the result: gauge invariance
is automatically satisfied by all S-matrix elements
except the vertex function. For the vertex funetion,
gauge invariance is a boundary condition.

VII. SAMPLE CALCULATION IN PERTURBATION
THEORY
If we expand the currents in powers of e, Eq.
(IV.32) becomes

5 +(n}

n-}
L = bz, 22) — P, 3 P, Y
5.’131 k=1

Uiz

(VILY)

where b™ is that part of b that is of nth order
in e. We have assumed that j has no zero-order
part. The first-order current is then determined
entirely by 5. If 1 and 2 both refer to fermion
variables, b’ cannot contain any derivatives as
was pointed out in Section (IV.D). Hence the only
Lorentz-invariant solution is

5j;1)/6f1 = _ie'Y'Ain(w;) 8(3:1 - 1‘2). (‘/II.2)

The factor ¢ has been put in to satisfy generalized
unitarity. (It is shown explicitly in the Appendix
that the Pauli interaction is not allowed.) Inte-
grating (VIL.2) gives

(@) = —dey- Au(@¥nlr)  (VIL3)

for the current associated with a fermion field. From
this one obtains

57 = [ ¢ Py Au@¥u@,  (VILY



S-OPERATOR THEORY. II.

so that
i#(@) = tedia(@)y- 4ia(2), (VIL5)
i5.@) = —ie Fru(@vatin(@):. (VIL6)

As a sample second-order calculation, we con-
sider the current that contains the photon propagator
as this case will demonstrate the use of the 9-op-
erator. To calculate the second-order photon current
we start with

B (22)/ 827"
= NbP(x,, )
= b (x,, T2)
+ 1€RPL {1 Pia(@)7 S(@1 — 22)Via Vi)
— Tr [%,.8:4(z1 — 271, 8-(z2 — 2] — (1/2)}.
(VIL?)

[Here (1/2) means the previous terms with the sub-
scripts 1 and 2 interchanged.] The first term in
(VIL.7) gives second-order Compton scattering while
the Tr term gives the photon propagator. The
boundary conditions that determine b (z,, z,) are
that the Fourier transform of any physical matrix
element shall vanish for large energies and that the
vertex functions shall be consistent with gauge in-
variance. No boundary condition is needed for the
propagator.

If we examine the structure of P, in Eq. (IV.13)
we see that when the K, K, differentiation is carried
out any term in which 8(z, — z,) is differentiated
is of the same form as b(z,, z,). Thus by appropriate
choice of b, one can replace P, by 6(x, — x,) provided
the boundary conditions are not violated. This re-
placement is consistent with the boundary conditions
for the Compton terms in (VIL.7) but would lead
to an undefined product of distributions for the
propagator terms. Hence we have

5]'53)(552)/513'1“ = :‘pin(xx)'Yu.SA(Zl - xz)‘)’,.,lllin(%):
+ & i)V Se(T2 — TV ¥in(7):
— 1€ RP, Tr [7,,8+(z1 — Z2)v..8-(x: — )

- 'Yu.S+(x2 -

— NP, .;(‘:)(371); g (@2)]

217 S-(z: — z2)]. (VIL3)

The Tr term may be explicitly evaluated; one
obtains

62 ipe(zr—=zs
oy ® [ e 0, — )

% [‘” i’ (Kz - 4m2)* K+ 2m 1
. 4 2 K2 (K2 + pZ)A

m3 K K
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——82 ip*(zy—2xs
T 32 * f d'p €™ V@)Y (3 — 8u4ds)

= A [ — 4am 2 om?
x _f_(}( m)x—l—zm_

2
K K

am2 K

Here the subseript 4 indicates that p, is replaced
by p, — te. Note that the second term is projected
to zero by the Ji-operator. The first term also con-
tains a part that is projected out by the 9t-operator;
this part is obtained by writing

6 + )7 = "] — [P’ + )]

The (x*p°)™* term is projected to zero by 9; the
other term yields the “renormalized”’ photon prop-
agator

. 2
e ip*(2:—23
wf:)(mlxﬁ)u' = 3(21!’)6 f d4pe ‘ )pz(pupr - PZ anv)

© g2 (3 2\} 2 2
X fm. %(K x24m) K:(x2++2;7:)4'
Thus we have
8 @)/ 828 = E[:F1@ ) Sa(®1 — 22)V,u¥ia(22):
+ Pin(@7uaSe(@: — 2V ¥ia(21) ]
(VII.10)

(VIL.9)

+ 1:‘0‘(42) (.’1?1 1] x2)u:#= .

Integration yields the result

i@ = ¢ [ SUFOr 4@ — D@
+ Wn@Se(z — Oy 4@ i8]

+i [ PP .40, (VILID

To obtain the second-order S-operator, we func-
tionally integrate the equation '
88® /ox, = — 8V 68V 6z, + 1P (@). (VILIZ)

The term involving St is equal to zero, but it
should be retained if one wishes to maintain the
identity: it has the effect of changing the advanced
and retarded Green’s functions into causal Green’s
functions. Hence we have

S(Z) = ieZ‘/‘daiE d4n
X :';in(g)v'Ain(E)Sc(é - 77)7'Ain(77)'/’in(77):
- [t n AR@ AT

+ terms independent of A" (VIL.13)
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Finally it should be emphasized that no divergent
expressions entered the calculation at any stage.

VII. DISCUSSION

In I, the theory of self-interacting scalar particles
was developed. The basic equations [Eq. (I1.1)] in-
volved the o-product of interpolating fields, In this
paper we have used a projection operator 9 rather
than the @-product for two reasons. First, this
operator is useful: it makes the interaction unique
and projects out non-gauge-invariant terms in the
photon propagator. Second, it is conjectured that
the -operator may be fundamental in the theory
of weak interactions where the high-energy behavior
of matrix elements causes divergences: the Ji-op-
erator may eliminate these unwanted parts of matrix
elements and leave the theory manageable. It seems
fairly certain that the 9t-operator and the ¢-product
are equivalent for renormalizable theories although
no proof of this conjecture exists.

The simplicity of the basic equations in the func-
tional differential form is a most attractive aspect
of this formulation. In this paper we have primarily
dealt with quantum electrodynamics, but the nota~
tion was so chosen that the equations are valid for
any low-spin particles; the treatment of higher spins
will require separate consideration.

The functional differential equation for the
currents,

(P4 + Pr)oj(zs)/ 6%, = —iP[{(z1), §(@2)]eas

is, perhaps, the most intriguing: it is strongly rem-
iniscent of basic quantum conditions such as

aj(x)/oz, = —i[P,, i(x)].

The currents and the free fields seem to be “con-
jugate” to one another.

In conclusion, from a formally simple and uni-
versal set of equations we have easily produced
finite results in perturbation theory that are in
agreement with the results of renormalization theory.

E. PUGH
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APPENDIX

Here we shall show that the 9t-operator projects
the Pauli interaction to zero. Let

P = f 'z Pn(@) (V7 — 1Y)0ANE) ()

be the Pauli interaction. Before differentiating P,
we must write it in the standard form

P=-— f d4x1 d'z, d4$3[”‘6_; (8(zs ~ z2) 8(zs — xz))]
6:2:3

X :l;in(xl)(%f)’r —_ 7»7#)A:n(x3) ’pin(g&) o

Then we have

&P
0%, dx,

= f d”mg{g%; (8(zs — z5) 8z — IJ)]

X (ray- Ainlzs) — v+ Aunlzs)r)

= (=0 + m) 8z, — )y Awlzy)
— v An@) (=, + m) 8z — )
+ (=8 — m) 8@ ~ Ty Au(x)
— v Au(@)(—8 — m) @ — ).

In this last form we see that each term involves
a factor K,8(x, — z,) or a factor K,é(z. — x,).
Hence we have the result

R4 52P/3f; 63;2 =0

and therefore a Pauli interaction is forbidden.
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In a nonperturbative theory for vector and scalar mesodynamics of the kind proposed by Salam,
it is found that the “‘gauge approximations’ introduced in this approach are the most sensible of a
set of approximation schemes that preserve the scalar gauge properties of the amplitudes of the
theory. The Green’s functions used are those suggested by the functional derivative approach of the
paper. The generalized identities of the Ward—-Takahashi kind that these Green’s functions satisfy are
exhibited, as well as the decomposition of the general n-point function in terms of these Green'’s

functions.

1. INTRODUCTION

GAUGE technique has been proposed in recent
papers'® that gives a nonperturbative re-
normalizable theory of vector and scalar meso-
dynamics, which can be summarized as follows:
The scalar gauge character of the theory implies
generalized Ward-Takahashi identities between
MG and M), where M) is an l-meson (I inci-
dent mesons and / emitted mesons), n-photon Green’s
function. Given M {5, M{r" can be decomposed into
longitudinal and transverse parts in such a way that
the longitudinal part is a functional of M{}) alone.
Beginning with M {3} for any [, the following sequence
can be constructed:
ME = MBI + M, W
M@ = MU IMEB] + MG PIMB®] + MG,
etc. In conventional notation M) = A, M{}} = T,
M =
If D is the photon propagator the set of Green’s
functions form a basic set, in that any Green’s func-
tion can be expressed as a functional of these in a
Dyson—Schwinger sense. Instead of this set, let the
set of Green’s functions D, {M{})} be taken as the
set from which all further Green’s functions are to
be constructed.
Having expressed all higher Green’s functions in
this way, the unitarity equations for M{}) can be
written in the form

ME =F[D,AT,C, .- M -1 (1.2
The zeroth gauge approximation is to take
r= I‘A[AL C = CAA[AL Y (1.3)

where A is obtained by explicitly solving the uni-
tarity equations
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=G[D,A,T,C, -+, MY -]

& G[D, A, T[A], C**[4], ---]

= G[D, Al, (1.4a)
D = H[D, A, T,C, , M3

~ H[D, A, T*[A], C*[4], ---]

= H[D, 4], (1.4b)

for A and D. [Solved by iteration beginning with
one-meson many-photon unitarity in (1.4a), reduc-
ing (1.4a) to the form

= G[A] ’

for example.]
I?, C®2% ... | etc. are then determined by their
unitarity equations as

I’ = -1+ K[D,A,T,C, -]
&~ —T* + K[D, A, T?, C44, .. ], (1.5a)

C*® = —C** + L[D, A, T, C, -]
~ —C* + LD, A, T, C*4, .-, (1.5b)

ete.

In the next gauge approximation, the procedure is
analogous, except that three equations have to be
solved explicitly, those for A, D, and T.

Symbolically, these equations are

= Q[D, A, T', C** 4 C*3, -], (1.6a)
D = H[D, A, T, C* + C*%, .. .], (1.6b)
T = K[D, A, T, C** 4+ C*®, ---]. (1.6¢)

C*®? and corresponding terms for higher functions
are then determined by their unitarity equations as
CBB — _(CAA + CAB)

+ L[D) AT, ¢ + CABy t ']) (1'7)

ete.
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Higher-order gauge approximations are analo-
gously defined.

It is not the purpose of this paper to discuss the
severe approximations that have to be made in (1.1)
before solutions to Egs. (1.4) and (1.5) are feasible
but to consider the gauge properties of the theory
and the approximations to the Green’s functions of
the theory that maintain these gauge properties.
In Sec. 2 the identities satisfied by the n-point func-
tions and their connected parts are exhibited. In
Secs. 3-5 these connected parts are expanded in
terms of the Green’s functions previously mentioned
and the generalized identities of the Ward-
Takahashi kind that these Green’s functions satisfy
are determined. In Sec. 6 the approximation schemes
for the Green’s functions that maintain the gauge
properties of the theory are discussed, and in the
event of there not being spectral representations for
these Green’s functions, the gauge approximations
outlined above are shown to be the most natural of
such schemes.

Since the motivation of this paper is a nonpertur-
bative solution of mesodynamics, the approach will
be as far removed from perturbation theory as
possible, although a perturbative approach like that
of the {&limiting process® would yield the identities
in a much shorter space. For convenience the termi-
nology of scalar mesodynamics will be used, since the
generalization of notation to the vector meson case
is readily apparent.

(Dz a/axu)[‘ruu;--'un(xv Ty Zuy U 0 Ymy @1 o0 zm)

- E Pu#-’(xy xi)Tm"'u-‘—nuiﬂ'“un(xl ot

=e Z [6'(z — 2) — 8'(z — y)]7.

where ¢ is the renormalized charge.
On the left-hand side of Eq. (2.5) one uses the
recursion formula (arising from 7, = A7)

T(QJ, Tiy v XTpy Y1 v Ym By vt Zm)
= P(x,xl e T Yr Y 21, ...zm)
+ 2 plaxl - byl e ylia - 2l)
comb
T(@har v Th Yeur o Y Zhar e 2h), (2.6)

wherez{ - -zl y, - - y., 2z -+ 2/ is the permutation
ofx, -~ Tyt *** Ym 21 * * + 2, and the summation is
taken over all partitions like the above. (Indices
have been dropped when no confusion can arise.)

3 T. D. Lee, Phys. Rev. 128, 899 (1962).
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2. THE n-POINT FUNCTIONS

The identities satisfied by the connected parts of
the n-point functions are first established. Introduce
the operator-valued generating functional of time-
ordered operator products

217,57 = Tewn (s [ 11,046
D8 + A@E @), @D

where J,(x), #(z), 7(x) are c-number funections of .

Define T'y,.cna(Tr, =+, Zal Y1 = Ymy 21 777 z.) by
Py, o T3 Yy o Ymi2r o0 2)
(n+m+r)rf
= LAMAMES ., (2.2)
I1 sJ..(x) 11 84w 111 dn(z)
1 1
and define 7, (T L, T3 Yy 0 Yms B 00 Za)
by
Taneeou® 2 Za3 Y ot YmiZr 0 2m) = (=)
X v =+ Tai Yo+ sy o+ 20) o
n=n=
(2.3)

The generator B of the p-functions, the connected
parts of the r-functions, is defined by

exp H{Jr 7, 71} = <T{J; ly "7}>' (2-4)

Starting from a renormalized gauge-invariant
Lagrangian, a differential recursion relation can be
obtained between the r-functions.* This is that

2]

Licty Tivr " Ty Yy " Ymy 21

Lo Y1 27 Ymy 21 0 zm)y (25)

Using the corresponding recursion formula arising
from T,, = H, T on the right-hand side of (2.5), it
can easily be shown by induction that

(Dz a/axﬂ)pﬂll:"’ﬂn(x7 Ty * Tny Y1 * Y1521 " zl)

= ¢ Z [8'x — 2.) — &'z — y))]

a1 Ty Yr o Y32t 2. 2.7

A corollary of (2.7) is that
(. 8/02.) puss -+ en(Zy Tyy +++ z,) = 0, alln > 1.
(2.7a)

Taking the full meson and photon propagators as
1A and —iD,,, respectively, p can be expressed as

+ K. Nishijima, Phys. Rev. 119, 485 (1960).
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PurerowlTry o Tl Y Yr3 B e 2) i(—e)"m3).

MW, s Zyy -+ TaiYs - Yi; 21 -+ - 2z) has the
13 tn {Lypgecepaioll ny Y1 iy~ 4
= "~ 1D)% f H dz} H dy: H dz; Fourier transf(;rm

D vseeonalPr * o DS - DI KL - )

with D9/ = 2op+ 2k,

here the incoming and outgoing mesons have charge
X Myeeonl@ e B3 40w Y20 o0 20) | (2.8) -+, momenta p, and p’, respectively, and the pho-
tons have incoming momenta & and polarizations ».

X l::[xl A(yi - y:) III (zz‘ - 2:) ‘Dlldvi(xi - CU:)

[That is, removing the propagators from p gives C and CPT invariance give
MG seema®ry D50l o DEE - k) = (=DMEsen(=pf - =Dl =py oo, —pis Ky -0 K
= mg’;))h'--vn(p{ M p:;'pl R /T _kly M _'kn)' (2'98’)

In addition,
11411 SRR ( MR I YERIY TE0 SRR TR N 8

= 3118;,,‘...,,5...,“...,,_(3)‘ A pz;p{ »e pf;kl e kb b kg b ;C,‘) (2-9b)
and

M D veeeonaPr o D o Dr o Dy ph o Pl Ky e )
=MD peernal@r Do P PP PRy k) (2.90)

A similar expression exists for interchange of p}, pl.
Taking Fourier transforms of (2.7), it is seen that the following relation holds for all n and [ except I = 0,
andn = 0, I = 1, for which the right-hand side of (2.10) is not defined:

AR (- NEER 5 HEEE JF0 A N &
= 2 87@) A@s + BMGeeonprr 0 Ptk B Pl ke B
- Z A7) Alph — DI ureona@r o Py 0l D = Ry PR K. (2.10)
The case n = 0,1 = 1, is the Ward-Takahashi identity

kTu(p, p') = A7(p") — A7 (D). (2.10a)
A corollary of (2.10) is that for all mesons on the mass shell
TS e raBay -+ s PPy e DE R Ky oK) =0 2.1

as required by gauge invariance.
It is necessary to consider the case [ = 1 in detail.

3. THE GREEN’S FUNCTIONS OF (i)

Let the one-photon irreducible part of I be M. [That is, all diagrams of 91{}, containing photon poles
(1) (

D(k), where k is a sum of external photon momenta, are omitted.] It follows from graphical considerations
that onl? satisfies (2.10) for [ = 1. Denoting the one-photon, one-meson irreducible vertex with m-photons
and one incident and emitted meson by 7(—e)"M 3, M) can be expressed in terms of My, m=1,2, -+, n
as

M, 5 b -+ k) = 20 M pas ki -+ kL)

comb

X [=A@IIM G @1r po; Klur + - klin) X w00 X (=A@ MG Pocrts P75 Khmges == KD, (3.1
where

Sni=mn, po=p-+ 2 ki

i ny—1+1
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3} 11‘( Ir(l

DG,p) =

DY (p,prksk;) =

i

Fi6. 1.
and where k] - - - kZ is the permutation of k, - - - k,, > n; = n.
the summation being taken over all possible parti- For everv such =1
tions. (The photon indices have again been omitted y
for convenience.) D™, (0,0 3k k), DR L (0, 0+ ks ke o)

The symmetry properties of M{}) are the same as
for MY and

M, p') = Tup, 1), (3.2a)

g;;w(p7 P k k,) Cm(P; p'1 k -k ); (32b)

in the notation of Refs. 1 and 2. In a perturbation
sense, M (%) is that function obtained by the inser-
tion of n photon vertices in all possible ways in a
meson proper self-energy blob.

The identities satisfied by the M ;) can now be
obtained. Firstly, the following definitions are
needed: Let D™.....(p, p'; ki - - - k.) [when there can
be no confusion, abbreviated to D (p, p’)] denote
any diagram which connects a single meson line of
incoming momentum p and outgoing momentum
p’, with photon vertices of incoming momenta
ks, --- k, and polarisations g, -+ u, in which all
general vertices are one-meson one-photon irreduci-
ble [i.e., any term on the right-hand side of (3.1)].
Then D...(p, p'; ki -+ k,) can be said to be
symbolically of the form

D™, p) = [(n)(n,-) ---

where

(m)(n)],  (3.3)

[abbreviated as D" (p, ' + k; k;)] is defined as
the sum of the set of diagrams obtained from
D®....(p, p'; ks -+ - k,) by the insertion of a photon
vertex of incoming momentum % and polarisation u
in all possible ways [i.e., the removal of a photon
vertex u from D™V (p, ' + k; k;) gives a set of
diagrams topologically equivalent to D™ (p, p)].
Figure 1 is an example of this procedure. (Straight
lines denote mesons and wavy lines denote photons.)
The following Lemma then holds.

Lemma:

If, forn =1,2 ---  m,

kM0, '+ K5 Ky By - K
= M@ + k" + Ry e k)
= M@, 05 sy oK), (39
then
koD, 0+ s K By - k)

= eA7\p' + K)A@)D ..., D s Ky -+ - )
— eD.7. otk p' ks by, <o+ k)ARHE)AT (D),

(3.5)
for all D™ for whichn =1, 2, ---

, M.
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Proof: (a) If D™ (p, p’) is of the form [(n)], then

kD (0, 0’ + ks k)
= —i(—o)"" ' "ML (p, ' + k)

— kTuJp, p’ + BAl + DM@ + k, p’ + k)

— kL, o' + DA@)ME(p, p'5)]
= eA™(p + k)A(P)D™ (p, p)

— eD®(p + k,p’ + k)Alp + k)A™(p),
forn =12 ---,m.

() If D™ (p, p") is of the form [(s) ---]
where 1 < s < n, assume that (3.5) holds for n =
1, 2, --- r where r < m. Then D"V (p, p’) is of
the form
D" (p, p)

= —(—e)'M @, p")A@ "D (p, p'"), (3.7)
where s # r + 1 and

(3.6)

This gives
D (p, ' + ki k)
= —(=)'MH@' + k, v + k)
X Alp” + k)D, ™" (p, p” + k; k)
+ e(—e)' M0 0" + ki k)
X A(p")D" " (p, p')
— e(—e)'Tu(@’, p’" + k)

X AP M@, p' ) D, p')  (3.8)
which, under the hypothesis made, gives
kDS (0, " + ki k)
= eD"(p, p)A7 (P + K)AD)
— DV (p + k,p' + K)AD + KA (R). (3.9

Equation (3.9) is easily seen to be true for D =
[(1), (1)], and hence, the Lemma is true for D’s of

Pk Apik P4k
k (m+1)
et "_rr)k } ?hotong
— +
} (me1) Jz(m-u) ek
'P"mton.s 'PhotOFIS
b P P
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type b). Thus the Lemms is true. The following
theorem can now be shown to be true.

Theorem I:

If M{}) is the one-photon one-meson irreducible
part of 9, where 9] is defined as in (2.8), then

kﬂME,ll;ﬂl:x“'un(pr p, -+ k; k, kl s k,.)

= MBueoal® + k0" + 5 Foy - K
M3, 0k B) (3.10)
for all » > 0.
Proof:
The previous results are that
AP e n®, D+ K5 By Ky <o KA + F)
= AP + DMl + &, 0" + k5 By -+ k)
X Alp’ + k)
— AP e, 5 B -+ RNADD)  (3.12)

for all n, and that if (3.10) holdsforn = 1,2, --- m
then (3.5) holds forn = 1,2, --- m.

Assume that (3.10) is true forn = 1, 2, --+ m.
Take n = m + 1in (3.11). Using the decomposition
(3.1) for ai%* and onin*"! and the Lemma (3.11)
reduces, for this value of n, to the form
kuME;n);i:"'umh(pr p’ + k: k’ kly e km+l)

- knru(p: P + k)A(p + k)
X Msz)umh@ + ks p, + k} kl et kvn+l)

— kL', p" + K)A®)

X ME;");:)---MH(Z’, p,; klr U km+1)
= AT(p" + kAP
X MG eimss @05 1 o Foms)

— Alp + k)A™(p)
X Mm@ + 530" + Ky -
equivalent diagrammatically to Fig. 2.

k1), 1(3.12)

prk P !
—_ v } (mat)
- thotens phelons
?+k B

Fia. 2.
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Ward’s identity immediately gives
B Mm@, D7+ B By By e Eo)
= MO @ F B0+ Ei ke E)
= MG @, 05 K1y o Bwar). (3.13)

Thus if (3.10) holds forn = 1, 2, - .. m, it holds
forn = m 4+ 1. Equation (3.10) can easily be shown
to be true for n = 1. Hence, the theorem is proved.

A corollary to the theorem is that (3.5) is true for
all n > 0. If the meson is on the mass shell initially
and finally, then

kD P (p, p' + k5 k;) =0
4. THE DECOMPOSITION OF o1}

forall n > 0.

The case I > 1 is now considered in detail, using
further properties of functional derivatives.

For the sake of convenience the notation will be
adopted that repetition of the same space-time
variables implies integration over them, and that,
where not stated explicitly, the space-time co-
ordinates z, y, z correspond to functional differentia-
tion with respect to J,, %, and », respectively.

In addition the functions p will be defined as the
functional derivatives of H{J, 4, n} with respect to
external sources so that

Blico = p. (4.1)

n=ij=0
With this notation, it is seen that
6ﬁu(xl) — 55:;(372)

Pl ) = Gar e =l 4P
Differentiating the identity
56(y,2) = — By, 2)087 (@, ¥, 2  (4.3)

n times with respect to J, and using the relation
(4.2), a decomposition of p,,.....(x: -+ Z.; ¥, 2) is
obtained in terms of

(r)

(l)v.“-vr(xl et Ty Y, z) and é::)...,,(x, e x'),

where

[} ]

6‘5:).....,(11 e 27.) = ) ﬁ—l(xly xZ)

3b,.(xs)  8pu(z,
(4.4)
and
2:;'1""r(x1 e Ths Y, z)
M \T S ] D ] A=l
RS R T es A

RIVERS

If
0'::)----,(1'1, Tty xs)=&§:2-'v.(x17 Y -’L',) J=0 (46)
n=ij=0
and
MSon (@1 - 239, 2)
(r)
= (I)v:---l'r(xl T Y, z) J=0 (47)
n=ij=0

then ¢ is the one-photon irreducible s-photon
purely-photon vertex and M{]) is the one-meson
one-photon irreducible vertex whose Fourier trans-
form is defined in Sec. 3.

Because the form of the identities is one of photon—
vertex insertion, there is no need to begin from the
basic identity (4.3) in the construction of 9n(}}, and
it is sufficient to start with a(y, -+ , yi3 21, -+ 21)
which can be expressed as

p(yh s Yy %y, 721)
= (¥, 21) + -+ ply, 2Dp(2r, Y1) -+« plz1, YD)

MW, - Lyl -2, (4.8)
where
?ﬂlf?i(yx, Y2 @)
= fﬁl?‘z’?(yl, YR, 20 g0 4.9)
n=7=0

Differentiating each side of (4.8) n times with
respect to J, and using (4.2), (4.4), and (4.5) an
expansion of f,,..., (&1 <+ Za; Y1 v Y 2 e 21)
(and hence an expansion of 91{}) by stripping off the
external propagators) is obtained as a sum of simply
connected diagrams, each one expressible in terms of

M%;; (xl e Tn Y, Z), 6'(')(271 Tt xn)

and
1?§T>)u1---um (@ Ty Yy Y2 1),
where
:T))m“'l-tm(xl o TmyYr Y38 et 2y)
—m ] é
= R
X MBW: -+ yi520 -+ 2).  (4.10)
Define M3, ccopn(® - Twj Y1 -+ Y1321 -+~ 2,) by
Mm@y T Yy - Y132 - 2p)
= E’ln))m"'um(xl o Twy Vi Yii2 0 2) g
n==0
(4.11)

Diagrammatically it is easily seen that differentiation
with respect to J, corresponds to the insertion of an
external photon propagator in all possible ways in a
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given diagram and that differentiation with respect
to p.(z) corresponds to the insertion of a single
photon vertex. Thus M{}) corresponds to the inser-
tion of n photon vertices in 9{3). (Note that M{]) =
M-

Consider the above decomposition in more detail
for a general p-function. In this decomposition the
p-function is expressed as a sum of topologically
distinet sets of simply connected diagrams, the
number of diagrams in each set being just sufficient
to yield the necessary symmetries in the external
indices. For a given value of n and I, let these dis-
tinct setsbelabeled by theindex? =0,1,2, - - - N(n, 1),
and let the sum of the diagrams in the 7th set be
Glirprona(@r *** Taj Y1, *-, Yij 2y *++ 21). Then the
G have the requisite symmetries in the external
indices and

Puroeoal®r = Tas Y, o Y32 0 2)
N
= 2 Gomeona® T Yy, Yri2 o 2).
=0 (4.12)

The value ¢ = 0 is given to the set consisting of the
single diagram in which all photon insertions have

been made into M{Y).

kM]l/IE?;lllﬂ)l"‘Mn(pl plyp{ Tt pl” k, ky « - kn)

= X MG
i
— Z MGl
4 (Dpy e un\t
?

for all n, l except n = 0, I = 1 for which the right-
hand side of (5.1) is not defined. [In which case we
have the Ward-Takahashi identity (2.10a).]

Proof:

Since Theorem I is the statement of Theorem II
for the case I = 1, we need only consider { > 1. It is
immediately seen from (2.10) and (2.10a) that (5.1)
is true for n = 1, all I. The proof for general n is by
induction in n.

Suppose (5.1) is true for all I > 1 and n=1, 2,-- -
m — 1 for some m > 2. Consider the decomposition

of puyeseun(Pr =+ Di; Pl -+ DI Ky -+ k) for arbitrary
I > 1. From Eq. (4.10)
Pureoua(Dr * 0 s D DL Dl e )

= Z 9(.-),.,...,,“(1)1 e pl;p{ ‘e p;; kl P km);

where
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That is,

Gorueunl®r T Yyt Yrs 2 o 2)

= i(—e)n I':I P,‘,-y.-(x.-, x:) H P(y;, z:) 111 p(zh y:)

MDa®l -zl Yyl Yyl e 2. (4.13)
Thus for I > 1, all G(;, for which 7 # 0 contain only

M3 for which m < n.

5. THE GENERALIZED IDENTITIES

Reverting to momentum space, the Fourier trans-
forms of the M {}} defined in Sec. 4 satisfy the follow-
ing theorem.

Theorem 11:

M, o Dyl - Dl ky -+ ka) is the
Fourier transform of M{3,....,..(%1 -+ Taj U1 * - Y3
71 -+ 2;) as defined in Sec. 4 where p, p’, k denote
incoming momenta of mesons with charge e, out-
going momenta of mesons with charge e, and in-
coming momenta of photons with polarization u,
respectively, then

Pk, ppl o phi ke k)

"'pl;p{"'yp:‘_k;"'p;;kl"'kn)v (5'1)
G@peennPr PPl Pl Ry k)
m = 1 M H
i e T D || 1T 800 || 1T 400 |
M@ P Dl Pk o k). (5.3)

If, for © 5 0, geoyueeown (D1 Du; PI- - P brv - k)
is one of the diagrams in the 7th set, then it has the
form

...pl;p{ ...p{;kl km)

x| TT pis.ea |

g "'um(pl

= {(—3)"(—e) H (A D’ (p, g.) Ag,)]

X M@y o @l gl )
1
X III [Algh) D™ (¢’, 1) AWPY], (5.4)
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where 2 n; + Eni- +r=m,and u, ---, u, are
some subset of &k, --- k. with v, --- v, the corre-
sponding polarizations.

The functions D’™ (p, q) appearing on the right-
hand side of Eq. (5.4) correspond to simply con-
nected diagrams obtained from D" (p, q) as defined
in Sec. 3 for some 7, < n by grafting on strings of

R. J. RIVERS

purely-photon vertices in such a way that the total
number of external photon vertices is n. The rela-
tionship between M’} and M{;;’ for some r, < r <
m is similarly defined.

With a little labor, using the lemma to Theorem I,
Egs. (2.7a) and (2.10a) and the induction assump-
tion, it is seen that g(;, satisfies the identity

e Pz;Pf ..-p{:k;kly e km)
= Zg(nm---um(lh,

— 2 Georueun®r D DL e BE = Ky oo Pl Ky oK),
H

’:ka:;lz(k)gmnm. ceoum(D1

’pi+k1 et ypl;p{"'p{;kl e km)

(5.5)

where goyppeepn® - D1y 2L+ D ki o k) is the sum of the set of diagrams obtained from
Fiirareenn(Pr =+ Dy DL -+ Di Ky -+ k.) by the insertion of a single photon propagator of momentum % and
external polarization u in all possible ways.

Thus, Qiyureepn®r <« Pi; 2L -+« Ph; k1 - - - k.,) satisfies an identical identity for all 7 < 0, where
Gormsuneronm = GEZQ: Gyuipepm: (5.6)
From Egs. (2.8) and (2.10) it is seen that p,,...,, (0 -+ 223 0L - -+ ik, -+ k.) satisfies the identity
ik, D) puss a1 =+ P25 PY - DI K, Ky - k)
= 2wy e Pt Ky p L Pl R e )
- ;pmmm(pl cepupl e ol =k ok oo k) (B)

for all n.

Hence, from (5.2) Goypreeenn®@r *** D13 D) -+ Dhy Ky -+ + k) satisfies (5.5). From the form of G, as given
in (5.8), it is seen that this implies that (5.1) holds for all [ and n = m. Thus the theorem is proved.

A corollary to Theorem II is that Eq. (5.5) holds for all values of | and m. Removing the external prop-
agators from g s .. ue 804 J(iypiuree-ua 10 give functions he;y,,...,, and kg ,ip,-..0, defined by

g(i)m---nn(pl * 0t Dis Pf e Pf} kl e k»)[III D;-'lu(ki):l

= (_l)l(—":)’l III A(py) III APDhiiyreena®@ - P3P - DL R - K, (5.8)
and

tD (R G cornisn-ounl@r - D DL DI K Ry e kn)[Ill D;;‘..-(ki)]

(—l)l(“i)" IlI A(P,') III A@;)h(i)ynﬂx"'yn(pl e Pz}p{ e p{: k; by oo kn)y (5-9)

it is seen that for all the mesons on the mass shell

Ehrsivs-monn@y - D PL - pl ks Ky - k) = 0 (5.10)
and can be taken as a definition of the gauge invariance of the theory.
6. THE APPROXIMATION SCHEMES THAT MAINTAIN GAUGE INVARIANCE
The function M) can be decomposed (nonuniquely) as
M3 = M3 + MG, (6.1)
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so that (symbolically)
kB = XM -

ELMDE =0,

For a given n, I define M{};"™ by the decomposition
Z} A[((vln)m—m ’

(n)B __ (0,2)
M(l) - ‘M(l) ’

(n—1)
Z M(l) s

all k;. (6.2)

M@t =
(6.3)

where

(m—1,n—m)

ke MG = 30 M@ - 2 MG
in out
64)

(n)

If WM, the rth approximation for M), is

defined as
CMEH = X ME? for r<n,
=0 (6.5)
=M?3 for r > n,

it follows that
’C (r)M(n) —

for all 7.

For given arbitrary values of s and m, it is apparent
that there is almost unlimited scope in setting up
approximation schemes that preserve the symmetries
and the gauge properties of M%), The most general
scheme that is at all meaningful is as follows.

1 take
M@ = MY (6.72)
(n)

everywhere that M} appears in the expansion of
anéy) for arbitrary fixed 7, and all .

(b) For m > 1 take
MG = MR,
Mﬁn)) (“)ME”))
everywhere that M{} and M % occur in the ex-
pansion for arbitrary fixed r, and r; and all n.
If the approximated 9T} in cases (a) and (b)

are denoted by “Uaiy, a3, respectively,
then (symbolically) in correspondence to Eq. (2.10),

k;.(")EWCH; _ A—l A(h)m((:)_” _ A—l A(r;)m(s 1)’
(6.82)

E (r)ME?)—l)

out

Z (r)M(n—l) _ (66)

(a) Form =

(6.7b)

WT2) (8) -1 (ri,73) {(e-1)
ki'(h ra m(;) — ZA Al m(;)

- Z:tA—l A(h'”)ms;-).l) (68b)

for all <.
Using these approximated 91 ) in the full ampli-
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tude for a specific process will give an approximated
amplitude having the correct gauge properties.

An approximation scheme of the type (6.7b)
could only be of use if there were considerable know-
ledge of a spectral representation of M} for [ > 1.
In the absence of such representations M (]} must
be expanded as the sum of a set of symmetrized®
diagrams, each of which is expressible in terms of the
M) vertices. The Dyson® expansion of M) is the
most fundamental of these, using only I' and C
vertices. Further expansions can be made by suitable
recombination of subsets of diagrams in this Dyson
expansion. Although all such expansions are ob-
viously equivalent in the Dyson sense, in general
they become inequivalent when the vertices appear-
ing in the diagrams of the expansion are approxi-
mated in gauge-approximation schemes. By maximum
recombination of the Dyson expansion, a unique
well-defined expansion can presumably be obtained.
However, for the purpose of discussing the gauge
properties of the diagrams in the expansion of M)
any expansion can be considered.

Suppose G{%) is a symmetrized diagram in such an
expansion The contribution to M}, arising from

G, denoted by G{3), is obtained by grafting external
propagators to G{}), making n photon-propagator
insertions and then amputating all external propa-
gators from the resulting diagrams in the manner
previously discussed. Under the operation of photon-
propagator insertion of a longitudinal (n 4 1)st
photon propagator in all possible ways into this set
of diagrams, it is easily seen that the parts of the
diagrams that would be disconnected were all in-
ternal photon propagators served behave inde-
pendently. This implies that the G{) satisfy the same
identities and symmetries as the M{;) to which they
contribute, since it is only the meson lines passing
right through the diagrams that contribute to the
identities.

This has two consequences.

(1) If M for I > 1 is an approximation of
M3 obtained by taking only a subset of symmetrized
diagrams in some expansion of M) and M) is the
approximation of M {}) obtained by n photon propa-
gator insertions in /7 (), then /M (}} has the symmetries
of M E’{}, and

HE = D MG - X MG

out

6.9

for all 7.

§ Given a diagram @G, the symmetrized diagram G is the
sum of the set of dmgrams obtained from G by permuting
the external indices in all possible distinct ways,

¢ F. J. Dyson, Phys. Rev. 75, 1736 (1949).
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(2) If "'"M() is the approximation of M}, ob-
tained by taking
@ = uy
with arbitrary fixed r everywhere in some specified
expansion of M{}), then

Irl {n) {ri {n) ir}] {n}
ELUME = D UME —- X TME.

in oung

(6.10)

Note that the form of "M} depends on the actual
expansion of M} that has been used, and there is
no correspondence between "'M{) and VM de-
fined in (6.5).

Obviously (1) and (2) can be combined.

There is again considerable scope in setting up
approximation schemes that maintain the gauge
properties of M &) for arbitrary fixed s and m. In the
absence of any further criteria the only meaningful

scheme is to take
{n) __
M(l) =
ny __
Mg, =

M,

M,

(6.11)

in the expansion of MM ;) for fixed r(r = 0, 1, 2, - - ).

If the approximated 9% in this approximation is
denoted by ''aw,l) then it satisfies the identity

{rigpy(e) __ =1 Alrigp(s—1)
EUomis = >0 AT AV ans;
in

— 2 AT ANy

aut

(6.12)

for all <. These are the gauge approximations dis-
cussed in Sec. 1, which thus preserve the gauge
properties of the amplitudes of the theory.

CONCLUSION

The Green’s functions used in this paper were
chosen primarily because they arose naturally from
the functional derivative methods used, and because

R. J. RIVERS

scalar gauge invariance is more easily understandable
in terms of photon propagator insertion into *basic”
Green’s functions than by working directly with the
connected parts of the n-point functions. Moreover,
the identities satisfied by these Green’s functions
have been shown to be of the form
ke MEY = MG — 2 M3
in out

without the presence of external propagators, thus
simplifying the construction of the part of MY
that is a functional of M {3}, were M () known. In the
present context, it is only the M} that concern us
(although it is beyond the scope of this paper to
decide how the decomposition of M () into the M
is to be made and to what extent an approximation
for such a decomposition may be a ““good” approxi-
mation) and so this advantage cannot be fully used.

Although it has been shown that there is wider
scope for approximations that maintain the gauge
properties of amplitudes with these Green’s functions
than with the n-point functions, this greater choice
is essentially spurious, since there are no sensible
reasons for invoking it. The only sensible approxima-
tion schemes within this framework are the gauge
approximations discussed in Seec. 1.

The application of the same approach in general
Lie gauge theories will lead to approximation schemes
of similar form, but this is also beyond the scope of
this work and will be the subject of a subsequent

paper.
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We prove two theorems concerning the possibility of embedding the Lie algebra S of an internal
symmetry group $ and the Lie algebra P of the Poincare group @ into a larger algebra @ to obtain
intrinsic mass splitting among the multiplets belonging to the irreducible representations of §. We
assume that @ is a semi-direet sum of the invariant subalgebra 8 and of P. First, if § is a compact Lie
group, then @ is in fact a direct sum of S and P and there is no mass splitting. Second, if § is a semi-
simple Lie group, with an appropriate definition of the mass operator, there is still no mass splitting.
The relation of these results to previous papers is discussed.

INTRODUCTION

EVERAL papers'° have considered the prob-
lem of embedding the Poincare group ® and an
internal symmetry group $ into a large group G
to obtain intrinsic mass splitting among the multi-
plets which belong to the irreducible representations
of 8.

One often adds the requirement that G be a
product of § and @; that is, every element in §
can be written as a product of an element of 8 and
an element of @, and that § and ® have no elements
in common. Michel® has then shown that under
certain weak assumptions on the commutator of
elements of § and @, ¢ reduces to a semi-direct
product (i.e., one of the groups 8 and @ is an in-
variant subgroup of §). That 8 be an invariant
subgroup seems a most plausible physical condition.
For let = denote an element of ®, ¢ an element of §;
then = 'or applied to a state signifies making a
Lorentz transformation =, followed by an internal
transformation ¢, followed by the inverse Lorentz
transformation = . If the resultant state differed
from the original one by more than a pure internal
transformation, one would have to associate some
space-time effects with o, which is not what is meant
by an internal transformation. Thus = 'or is an
element of § and so § is an invariant subgroup.
We are concerned with the Lie algebras (which we
denote by the corresponding ordinary capital let-
ters). Thus we assume that the algebra G is a semi-

* Research sponsored b% the U. 8. Atomic Energy Com-
mission under contract with the Union Carbide Corporation.

% Present address: Yale University, New Haven, Con-
neeticut. . .

1 See references ci)ted in L. O'Raifeartaigh, Phys. Rev.
Letters 14, 332 (1965).

o S Raioastossh, Phys. Rev. Letters 14, 575 (1965),

3 U. Ottoson, A. 'Kihlberg, and J. Nilsson, Phys. Rev.
137, B658 (1965), hereinafter referred to as OKN.

i L. Michel, Phys. Rev. 137, B405 (1965).

s 1. O’Raifeartaigh, Phys. Rev, 139, B1052 (1965).

direct sum of the invariant subalgebra S and the
subalgebra P.

It is sometimes suggested® that the internal sym-
metry group 8 be a compact Lie group. In this con-
text, we shall prove:

Theorem 1: Let G be the semi-direct sum of the
invariant subalgebra S and the Poincare algebra
P, If 8 is a compact Lie group, then @ is in fact a
direct sum of S and P, and there is no mass splitting.

To obtain mass splitting, one might try to take $
semi-simple, but not compact. In this regard one
can show’'* that if G is the semi-direct sum of an
invariant semi-simple subalgebra S and the Poincare
subaglebra P, then :

G=8S@PFP 0

where P’ is an algebra isomorphic to, but not
identical to P. (P denotes direct sum.) The group
element corresponding to a given Lorentz trans-
formation in @ is not the same as that corresponding
to the same transformation in @, but is composed
also of an element from 8§ (see Eq. 5). An irreducible
representation of ( is the direct sum of an irreducible
representation of 8 and an irreducible representa-
tion of P’. We concentrate on those irreducible rep-
resentations of @ in which the irreducible representa-
tion of S is finite-dimensional. The states of such
a representation may be labeled by ¢,.(p’, §') where
m denotes the row in the irreducible representation
of 8, and p/, ¢’ are four-momentum and spin labels
belonging to the “rows’ of the representation of P’.

The mass operator is M* = P,P* where P, are
the translation generators of P. We show that M*
maps a state ¢.{p’, &) into a linear combination of
states with the same p’, s'. Thus M* is essentially
an operator (not necessarily self-adjoint) in the
finite-dimensional vector space of the irreducible
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representation of S. As such, M” has eigenvalues.
We will prove:

Theorem 2: Let G be the semi-direct sum of the
invariant subalgebra S and the Poincare algebra P.
If S is semi-simple, then G = S @ P’ where P’
is isomorphic to P. In an irreducible representation
of G which is the direct sum of a finite-dimensional
representation of S and an irreducible representation
of P/, the operator M* = P,P* is essentially a
finite-dimensional matrix whose eigenvalues are all
equal. Their common value is the invariant M’ =
P’ P characterizing the irreducible representation
of P'.

Thus if the eigenvalues of M* correspond to the
physical masses (or to the location of the poles of
the S matrix if the eigenvalues are complex), there
is no mass splitting for the finite-dimensional rep-
resentations of S, if S is semi-simple.

BACKGROUND

To put the theorems in context, we briefly review
some previous papers. O’Raifeartaigh® has shown
that if G is a Lie algebra with a finite number of
parameters and if the mass operator is to be self-
adjoint, then there is either no mass splitting or
there is a continuum of masses. Hence to obtain
a nontrivial discrete mass spectrum, either G must
have an infinity of parameters or the mass operator
is not self-adjoint. The first alternative is largely
unexplored, and we concentrate on the second.

This possibility was considered in Ref. 3 even
before O’Raifeartaigh’s paper appeared. There the
authors assume that G is a sum of S and P, and
under conditions specified in Ref. 3, they deduce

G=SPP,

where P’ is isomorphic to, but not identical to P.
The elements of P’ are composed of elements from
P and from S. This “interaction’” of elements of P
and S to produce the invariant P’ gives rise to the
mass splitting. In Ref. 5, this “redefinition” of P
into P’ is not considered to have any physical
significance; i.e., the elements of P’ and not of P
are identified as the generators of physical Lorentz
transformations. In what follows, we assume the
interpretation of OKN® that P and not P’ cor-
responds to the physical Lorentz transformations.

As an example, OKN claim that if one con-
siders the (1 + 1)-dimensional Poincare group as @,
and SU(4) as the group 8, then one can obtain a
finite-dimensional representation of § which gives
nontrivial mass splitting. In accord with Theorem

RALPH ROSKIES

1, we wish to show that the group that should ap-
pear is not the compact group SU(4), but its non-
compact complex extension SL(4). This is seen by
computing their [H,, p,] and recognizing that the
result is not in the Lie algebra of SU(4), but only
in its complex extension. Furthermore, according to
OKN the mass of a state is the expectation value
of M? for that state. Perhaps a more reasonable
definition is that the masses corrrespond to the
etgenvalues of M®, for eigenvalues are invariant
under a change of basis, but expectation values are
not. (M? is a matrix in a finite-dimensional vector
space. It is generally not diagonalizable, but still
has eigenvalues.) With eigenvalues as masses, we
show in accord with Theorem 2 that there is no
mass splitting.

It may appear that our Theorem 1 has already
been proved in Ref. 4. However, the proof there
shows that if S is compact, it is possible to write

G=SQ@P

with a redefinition of P into P’. We show that no
redefinition is necessary.

After this paper was written, we learned that
Sudarshan® proved a result similar to our Theorem
1. He showed that in any unitary representation of
@, one has the direct sum structure of Theorem 1.
The restriction to unitarity is necessary because he
considers Lie algebras over the complex numbers,
not over the reals as in this paper. Unitarity then
imposes the appropriate reality condition. We wish
to thank the referee for bringing Sudarshan’s paper
to our attention.

Note added in Proof. Roman and Koh [Nuovo
Cimento 39, 1015 (1965)] have proved a theorem
similar to our Theorem 2, without the restriction
to finite-dimensional representations. However, they
must assume that every vector of a definite weight
in the representation also has a definite mass (is an
eigenvector of P?),

PROOF OF THEOREM 1
We begin with
G=S84P,
where - denotes semi-direct sum with S as in-

variant subalgebra. We suppose that S is the Lie
algebra of a compact group $, which we can assume

¢ E. C. G. Sudarshan, J. Math. Phys. 6, 1329 (1965). In
the Corollary it is assumed, but not explicitly stated, that S
1s compact.
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to be connected. Since § is invariant, the trans-
formation

exps— (exp z) exps(expa)™, zEP,sE S

is an automorphism of §, which is connected to
the identity automorphism (z = 0) by
exp s — (exp az) exp s(exp az)™,

where a runs between 0 and 1. But the set of auto-
morphisms of a connected compact group $§ which
are connected to the identity automorphism is the
group of inner automorphisms induced by elements
of 8.7 Thus, given z in P, there is an element ¢(x)
in S such that for all s in S,

(exp z) exp s(exp )" = [exp £(z)] exp s[exp #(z)]™.
(2)
The infinitesimal form of (2) is that for all s in 8

[xv s] = {t(x)i 8. (3)

[If 8 has a nontrivial center, then {(x) is not defined
by (3). But since S is the Lie algebra of a compact
group, S can be written as the direct sum of its
center and of a semi-simple algebra.® We take i(z)
to be within the semi-simple algebra; this defines
it uniquely.]

The {(z) form a representation of P since

[t(lz, yD, 8] = [z, ¥1. 8] = [z, [y, sl] + [y, [s, 2]
= [t@), ly, sl] + [¢@), [s, =]]
= [t@), @), sl — (@), [¢2), s]]
= [[t(=), )], sl
Thus
Wz, y) = [t(=), )] €Y

Also from (3), ¢ — i{z) commutes with S. Thus,
if we define the Lie algebra P’ with generators

&)

2=z ~ ),
then

G=8S@PrP; (6)
P’ is isomorphic to P, since using (3), (4), and (5)
we find

7 K. Iwasawa, Ann. Math. 50, 507 (1949); see especially

. 514,
P 8 L. Pontrjagin, Topological Groups (Princeton University
Press, Princeton, New Jersey, 1939), Theorem 86.
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&y =l ),y - )]
= [z, 9] — [z, tW)] — (8@, y] + [4=), 1))
[z, y] — [H@), )] — [t(), t@)]
+ [¢@), {y))

i

= [z, y] — Kz, y)
= [z, yI".

If in (5), t(z) vanishes for all z, then P = P’ and
from (6) there is no mass splitting. Suppose there
exists an z, such that i{(z,) does not vanish. Then
there is a finite-dimensional representation of the
group § where the generator ¢(z,) is not represented
by the zero matrix.” The representation may be
assumed unitary since § is compact.’® Then we have
a finite-dimensional unitary representation of P
where not every element is represented by the unit
matrix. But this is impossible, since P has no non-
trivial finite-dimensional unitary representations.
Thus if § is compact, P = P’ and there is no mass
splitting.

Note that the proof used only the compactness of
the Lie group 8 and that P had no nontrivial finite-
dimensional unitary representations.

PROOF OF THEOREM 2

For a semisimple group, the derivation leading
to (6) is valid. Indeed, the mapping

s > z(s) = [z, 5]
of S into itself satisfies
z([a, b)) = [x(a), b] + [a, 2(B)].

Such a map is called a derivation, and Cartan has
shown that all derivations of a semi-simple group
are inner.”” Thus, given z in P, there exists a i(z)
in 8 such that (3) is satisfied for all s in S. Also note
that 8 has no center, and so in (3), (z) is uniquely
defined. (5) becomes

P, =P, — (P),
M:’u = Muv i t(Mp- y

where M,, are the generators of the homogeneous
Lorentz transformations, and {(P,), {(M,,) are ele-
ments of S, which form a representation of P. We
denote {(P,) by Q,, t{(M,,) by N,,.

0

¢ Ref, 8, Theorem 28.

10 Ref. 8, Theorem 23.

u E, Wigner, Ann. Math. 40, 149 (1939).

%2 N, Jacobson, Lie Algebras (Interscience Publishers, Inc.,
New York, 1962), p. 74.
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Consider a finite-dimensional irreducible rep-
resentation of S. We denote the matrices represent-
ing Q,, N,, by D(@,), D(N,,). These form a finite-
dimensional representation of P and so D(Q,) is a
nilpotent matrix.”® In triangular form, D(Q,) looks
like

N

Ozzzx -z
00z =z
DQR)=]|000z2 . 8
. z
00 --- 0)

Since for different u, the D(Q,) commute, they can
all be triangularized simultaneously, and all have
zeros along the main diagonal.

Suppose the basis in which D(Q,) assumes the
form (8) is denoted by ¢, m = 1,2, --- n, where n
is the dimension of the representation. Then ¢,.(p’, §')
form a basis for the representation of G. The p’
satisfy

plp™ = const = M". 9

13 See, for example, Ref. 2, Egs. (9)-(12).

RALPH ROSKIES

The effect of P} on ¢,,(p’, §’) is given by
Plpa(p', ') = pion®’, ).

Thus from (7), P, applied to ¢,(p’, §’) is a linear
combination of states with the same p’, s’. Sup-
pressing the p’, s’ variables, we have that P, is
represented by the matrix

DP,) = pil + D(@Q.),

where 1 is the unit matrix in the representation
space of 8. Using (8), D(P,)D(P*) becomes

(10)

M? z 2z - z
72
pary = | O M= il
0 0 M*

and so all the eigenvalues of D(M*®) are M'?, which
establishes Theorem 2.
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A method of solution for coupled oscillator systems having commensurable frequencies w; = ke
and suitable nonlinear couplings is presented. The method is that of perturbation expansions about
periodic solutions. For simplicity, a three-oscillator system is discussed, but larger systems may be
treated in the same way. The method provides results which are considerably better than those
obtainable by any other currently available method, such as the perturbation method of Wigner—-
Brillouin. As presented, the method is rather unrefined, but it demonstrates that nonlinear oscillator
systems of this resonant type are susceptible to analysis.

I. INTRODUCTION

YSTEMS of nonlinear coupled oscillators find

extensive application as mathematical models
for a variety of physical systems, in fields ranging
from molecular chemistry’ and statistical mechan-
ics® to astronomy.® In particular, the class of cubic-
coupled oscillator systems in which the uncoupled
frequencies are linearly commensurable, or nearly
so, is of special interest because of widespread energy
sharing in such systems.* But it is just this resonant
class of systems for which the usual perturbation
methods encounter serious difficulties® characterized
by the appearance of terms having small denomina-
tors in all orders of the expansions.

This paper presents a new method of solution by
perturbation expansions about periodic solutions,
which directly applies to the extreme case of a non-
linear coupled oscillator system in which the un-
coupled frequencies are exactly commensurable. The
results obtained in first order by this method are
considerably better than those obtainable by any
other presently available method. Although in the
present formulation, difficulties are encountered in
higher orders due to the appearance of terms having
small denominators, it is likely that this situation
can be remedied.

For the sake of clarity, the method of solution is

* Work partly supported by the National Science Founda-
tion. Portions of this work were presented in partial fulfill-
ment of the requirements for the Ph.D. degree of JJW. at
the Georgia Institute of Technology. .

1 Present address: Department of Computer Science.

1 D, Bunker, J. Chem. Phys. 37, 393 (1962).

2 R, Northcote and R. Potts, J. Math. Phys. 5, 383 (1964).

8 M. Hénon and C. Heiles, Astron. J. 69, 73 (1964); G.
Contopoulos, tbid. 68, 1, 763 (1963).

+J. Ford and J. Waters, J. Math. Phys. 4, 1293 (1963).

8 E. A. Jackson, J. Math. Phys. 4, 551, 686 (1963).

presented in terms of its application to a specific
simple example, that of a system of three oscillators.
Detailed calculations have also been carried out for a
system of five oscillators; the essential results are the
same. In principle, there is no limit to the size of the
system which can be treated by this method. How-
ever, the practical limit is probably 10 or 15 oscil-
lators, because of the computational labor involved.

Section II presents the system to be analyzed and
provides a brief discussion of the difficulties en-
countered in the application of a familiar perturba-
tion method, that of Wigner—Brillouin. In See. III,
the existence of three periodic solutions for the three-
oscillator system is established, and a first-order
perturbation expansion about a periodic solution is
introduced. In Sec. IV, the results of this first-order
approximation are compared with the results of
numerical integration of the equations of motion,
for several appropriate sets of initial conditions.
Finally, the difficulties encountered in making a
second-order expansion are described in See. V, and
some conclusions are offered in Sec. VI.

II. SYSTEM TO BE ANALYZED

Consider the three-oscillator system governed by
the Hamiltonian

H = }p: + p2 + p5) + 3’q + 4°¢; + 9G53
+ aw"(%\/é)[(\/? - 1)(‘*’2‘]1(11% — D01z + GPiP2)
+ %‘(60’2 019205 + @p=ps + 2p1¢:ps — 3pip2gs)] (1)

in which the uncoupled oscillator frequencies are
exactly commensurable:

wk=kw. k=l,2,3.
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This Hamiltonian is sufficient to illustrate the ad-
vantages of our methods over previous techniques.
Hamiltonian (1) is an approximation to a more phys-
ically interesting® Hamiltonian

H = 3@, + 9} + pd) + 3¢ + 4°E + 9%7gd)
+ a(%\/é)[(\/é - Dai1gaq:
- (\/Q + 1Dg19:¢s + 219295 (2)

Hamiltonians (1) and (2) are related by a theorem
due to Birkhoff and Moser.” This theorem establishes
the existence of a nonlinear canonical transformation
which identifies the crucial resonant terms in
Hamiltonian (2). Hamiltonian (1) was obtained from
Hamiltonian (2) by retaining only resonant terms
through third degree.

The application of a familiar perturbation scheme
such as the Wigner—Brillouin method*® to the system
governed by Hamiltonian (1) results in the appear-
ance of terms in the solution having small denomina-
tors in all orders, including first order. If truncated
at any low order, such a result provides a very poor
approximation to the general solution of the system,
because terms of all orders need to be summed.

For nonresonant oscillator systems in which the
uncoupled frequencies are not commensurable, it
is possible in the Wigner—Brillouin method to elimi-
nate those “self-resonant” terms having small de-
nominators, which occur in even orders. But in the
present case, it is not clear how the method can be
adapted in general to provide elimination of the
added * coupled-resonant” terms, which have small
denominators because of commensurability of the
uncoupled frequencies. The Wigner—Brillouin method
is apparently useful for systems of the type (1)
only in special situations in which the perturbed
frequencies are also commensurable, leading to peri-
odic solutions which are discussed in the following
section.

III. METHOD OF SOLUTION

The equations of motion for the system governed
by Hamiltonian (1) are

¢ =p + CL(V2 — 1)(—2p:g: + ¢:p2)

+ 32¢:ps — 3p205)]; (3a)
D = _w291 — C[(\/Q - 1)(2“’29192 + p1p2)
+ ¥(60’q.q: + ppa)];  (3b)

s See Ref. 4, Eq. (13).

7 G. D. Birkhoff, Dynamical Systems (American Mathe-
matical Society Colloquium Publications, New York, 1927),
II); 82; J.4 Moser, Commun. Pure Appl. Math. 11, 81 (1958),
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g = Dy + C[(‘/Q — {(g.py)

+ #aps — 3pgw)];  Be)

P = —4'q, — C(V2 — D' @i — pip)
+ 3(60’qigs + 2pips)};  (3d)
¢ = ps + 5C(qip: + 2p1ge); (3e)
Ps = —90°qs — C(20° a2 — Pup2), (3f)

where C = }aw *V2.

It has been discovered* that a set of three exact
periodic solutions to Egs. (3) can be found by as-
suming a trial solution of the form

g = A, cos kr;
pk = —kAk Sin kT,

where 7 = (@ + aw 'b)tand k = 1, 2, 3. The sets of
approximate numerical parameters which charac-
terize the three periodic solutions are given in Table
I, where A, is an amplitude which is determined by
the initial conditions. It has been verified that these
periodie solutions are stable over a large number of
oscillations, by numerical integration of Egs. (3)
starting from the three sets of initial conditions
given in Table I.

Given the existence of a number of periodic solu-
tions of the system, it is natural to attempt to obtain
approximations to the general solution of the system
in terms of expansions about these solutions. That
is, assume a trial solution of the form

¢ = Ao{(4io + B1Bi + B:Bis) cos kr

4+ B[4, cos (kr + 1) + Ap-y cos (bt — 7,)]

+ B.[A:s cos (bt + 75) + Ai—s cos (k7 — 12)]}; (4a)
P = —kwA,{(Aso + BBy + B:Bis) sin kr

+ Bi[A4s sin (kr + =) + Ai-y sin (kbr — 7))

+ Ba[ Az sin (kr 4 72) + As-z sin (kr — 75)]}, (4b)

where v = [0 + aw *(by + Biby + B:2b2)]t + 6 and
7; = aw '¢;t + 6;, and where k = 1, 2, 3. This is a
trigonometric series expansion in powers of dimen-
sionless expansion parameters 8, and 8,, in which

TasLE I. Coefficients for three periodic solutions.

. First Second Third
Coefficient solution solution solution
b 0.078344, 0 —0.078344,
A, 0.913644, 0.979224, 0.913644,
A, 0.369594, 0 —0.369594,
A 0.169324, —0.202804, 0.169324,




RESONANT NONLINEAR

only zeroth- and first-order terms have been retained.
Amplitude parameter A,, expansion parameters 8,
and B,, and phase angles 6, 6,, and 8, are determined
by the six initial conditions in a given situation. The
substitution of Eqs. (4) into Egs. (8) reduces the
differential equations of motion to a set of algebraic
equations which determine the A’s, B’s, b’s, and
¢’s of Eqs. (4) for all sets of initial conditions.

For the general case of a system of N oscillators, a
similar trial solution having N —1 expansion param-
eters 8; would be employed.

In zeroth order, the result of substituting the as-
sumed solution, Egs. (4), into the equations of
motion, Eqs. (3), is the same as when the peri-
odic solutions were found. The first-order coefficients
depend upon which periodic solution is chosen for a
zeroth-order solution. Substitution of a zeroth-order
solution into the algebraic equations and setting
B, = 0 and B,; = 0 produces a linear eigenvalue
problem, from which the values of the frequency
components ¢; may be determined, along with the
values of the coefficients A; for j # 0. The above
choice of the B,; causes the first-order frequency
corrections b, and b, to vanish.

For the sets of initial conditions which result in
periodic solutions, the expansion parameters 8, and
8. are zero. For a set of initial conditions in a small
neighborhood of those of a periodic solution, the
expansion parameters are small, and the first-order
expressions of Egs. (4) should provide a useful
approximation to the general solution in this region.
Some indication of the size of these neighborhoods
relative to the amount of error involved in the first-
order expansions is given in the next section.

IV. COMPARISON WITH NUMERICAL SOLUTIONS

In order to roughly determine the region of valid-
ity of the first-order approximate solutions for the
particular three-oscillator system being counsidered,
an approximate solution may be compared with
the eorresponding numerical solution of the equa-
tions of motion for several selected sets of initial
conditions.

Numerical integration of the equations of motion
has been carried out using a standard fourth-order
Runge-Kutta method with a step size of 0.05. Cer-
tain checks, including a running calculation of the
Hamiltonian and the reversal of several runs back
to the initial conditions, indicate that the accuracy
of the numerical solutions presented is better than
+0.1%.

In the comparisons which follow, rather than
plotting positions or momenta versus time, graphs of
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~—— NUMERACAL
G APPROXIMATE

o 100

. Fre. 1. Comparison of numerical and aligroximate solu-
tlcins for initial conditions close to those of the first periodic
solution,

energies,
E, = ipi + #'’g,

versus time are presented. This best displays the
differences in long-term behavior of the various
solutions. The long-term characteristics, dependent
upon the nonlinear coupling and the uncoupled
frequencies, are the most difficult to approximate for
systems of the present type.

In Fig. 1, the first~order approximate solution is
compared with the numerical solution for a set of
initial conditions which are rather close to those of
the first periodic solution, the first column of Table
1. The constant-energy lines in Fig. 1 are those of
this periodic solution. The expansion parameters
are 8, = —0.15 and B8, = —0.06, so that a first-
order expansion abouf this periodic solution is ex-
pected to provide a rather good approximation to
the actual solution. Figure 1 confirms that it does.

Graphical presentations such as Fig. 1 are ade-
quate for comparing multiperiodic functions which
are dominated by one component, as is E,. But
when several components have comparable ampli-
tudes, and there are errors in the determination of
the frequencies and amplitudes of each, the over-all
error becomes difficult to estimate, as in the case
of the plots of E, and E; versus time. In these cases,
the numerical solution may be harmonic-analyzed
and its amplitude and frequency components com-
pared with those of the first-order energy approxi-
mation. A sample of such a comparison is given in
Table 11 for E, of Fig. 1.
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TasLe II. Harmonic content of energy E, in Fig. 1.

Numerical solution Approximate solution

Frequency Amplitude Frequency Amplitude
0.000 0.996 0.000 1.001
0.097 0.273 0.095 0.273
0.194 -0.127 0.189 —0.019
0.165 —0.101 0.172 —0.223
0.068 —0.038 0.077 -~0.042

Since the first-order approximate solution for a
situation close to a periodic solution is rather good,
it is of interest to investigate how good the first-
order approximation is for a more extreme situation.
In the case of a two-oscillator system with a similar
nonlinear coupling, the solution of which can be
obtained exactly in terms of elliptic functions,® the
system configuration which is most extreme from
that of the periodic solutions is the one in which
one of the oscillators initially has all of the energy.
The same class of initial conditions is expected to
be most extreme in this sense for larger systems.

Figure 2 compares the first-order approximation
with the numerical solution for the situation in
which all of the energy is initially given to the first
oscillator; Figure 3 provides the same comparison
for the case in which the third oscillator starts with
most of the energy. The approximate solution pre-
sented in Fig. 2 is in error by about 109, in both
the frequencies and the amplitudes. That shown in

Eig =

2' l ..'.‘

14 /f '.-" “\¢

o ~+ + 4 + t

-] 50 o0 150 200

Ez3

2

it

oJ ) AL..AA

(o] 50 0o

150 200

Fia. 2. Comparison of numerical (solid curves) and approxi-
mate (dotted curves) for extreme initial conditions. All
energy was initially given to the first oscillator; the perturba-
tion expansion is about the second periodic solution.

8 B. Baker and E. Ross, Proc. Edinburgh Math. Soc. 39,
34 (1921).
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1 ]
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200 300

t
400
Fia. 3. Similar to Fig. 2, but most of energy was initially
given to the third oscillator.

0 oo

Fig. 3 is not as good; it is in error by about 209, in
the frequencies and by perbhaps 509 in the ampli-
tudes.

This brief survey suggests the likelihood that the
first-order approximation to the general solution
of this three-oscillator system is reasonably good
for most sets of initial conditions, providing that
the expansions are made about the appropriate
periodic solutions in each case. The same conclusion
may be made for a nonlinear five-oscillator system
which has been similarly investigated.

V. HIGHER-ORDER APPROXIMATIONS

The difficulty of the appearance of terms having
small denominators occurs in the present scheme
in second and higher orders, just as it occurred in
the Wigner-Brillouin perturbation method in first
and higher orders when applied to a system having
commensurable uncoupled frequencies.

If second-order terms of all possible kinds are
added in a natural manner to the first-order expres-
sion for the assumed solution, Eqgs. (4), it is found
upon numerical solution that the amplitude coef-
ficients of terms such as cos (kr 4+ =; — ;) in which
r; and 7; are equal or very nearly equal, are quite
large.

In the interest of convergence, it is necessary to
prevent the appearance of such terms in the solu-
tion. The manner in which this should be done is
not immediately clear. There are numerous arbi-
trary coefficients, such as the B,; in Eqgs. (4) and
similar second-order coefficients, which have been
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set zero for computational simplicity and for lack
of a better choice. It is likely that these coefficients
can be chosen in such a manner as to prevent the
appearance of troublesome terms in higher orders,
as is done in other perturbation schemes; however,
our investigation of this point is incomplete at
present.

VI. CONCLUSIONS

The method of solution by perturbation expan-
sions about periodic solutions, which has been de-
seribed here in terms of its application to a three-
oscillator system, needs improvement with regard
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to the calculation of higher-order terms. Its strength
lies in the fact that it can provide first-order results
which are considerably better than those obtainable
by other methods, principally because the problem
of the appearance of terms having small denomina-
tors does not occur until second order in this method.
This method has been presented in order to de-
monstrate that nonlinear coupled oscillator systems
of the type considered, having exactly commensur-
able uncoupled frequencies, are susceptible to anal-
ysis. It is hoped that this preliminary investigation
will lead to the development of more practical and
rigorous methods of analysis for these systems.
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We extend the investigation of the long-time behavior of a model consisting of N two-level atoms
interacting with & single electromagnetic cavity mode to include interaction with many cavity modes.
We show that, as a consequence of the coupling between radiation modes produced by spatial density
variations of the population inversion, there is no strictly stationary state possible for multimode
behavior. However we obtain a stationary state by neglecting the rapidly oscillating terms. The
steady-state population inversion is then a solution of an eigenvalue problem. The eigenvalue deter-
minate is a function of the number of modes and the coupling between modes in addition to the usual
dependence on frequencies and relaxation times. We explicitly solve for the unique eigenvalue in
special cases. The corresponding eigenvector gives the steady-state mode intensity ratios. The absolute
values of the steady-state intensities are determined by the energy conservation equation generalized
to include pumping and dissipation. We also calculate the steady-state frequency shifts for each
mode. The mode frequency shifts are practically independent of each other and have the same func-
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tional form as the single-mode frequency shifts.

L. INTRODUCTION

N this paper we extend our model of interacting

radiation and matter for single-mode gaseous
lasers’"® to include multimode gaseous lasers. In I
we showed that the lowest-order solution to our
model of N stationary two-level systems in the
presence of radiation is the self-consistent field
approximation which we refer to as SCFA. In
the absence of center-of-mass motion we found
there is only one dimensionless dynamical constant
in the theory, namely

Ny = 3 [(a] e [D)]* (2r/RQ)
= (4z) 79\ = o,

where 91 is the number of two-level systems per
unit volume, {a| -t |b) is the dipole matrix element
between the two levels of the atom, Q is the cavity
frequency, and A is the wavelength of the radiation.

When we generalized our model to include dis-
sipation, pumping, and the center-of-mass motion,
we obtained only one new dimensionless dynamical
constant, namely 8 = oa(wo/wp) Where w, is the
frequency separation of the two atomic levels and
wp is the Doppler width. The Doppler width is
[k*(kzT)m ™'} where k is the wavenumber of the
radiation, T is the temperature, kp is Boltzmann’s
constant, and m is the mass of the two-level system.

* The research reported in this paper was sponsored in

art by the U. 8. Air Force Cambridge Research Laboratories,

ffice of Aerospace Research,
1 C. R. Willis, J. Math. Phys. 5, 1241 (1964); hereafter

referred to as I.
2 C. R. Willis, J. Math. Phys. 6, 1984 (1965), hereafter

referred to as II.

In IT we showed that when g8 is small compared
with one, the electromagnetic field amplitudes
vary adiabatically slowly compared with the center-
of-mass motion. Since 8 is much less than one in
gas lasers, the electromagnetic field amplitudes see
mainly certain integrals of the velocity distribution,
not the microscopic details of the center-of-mass
motion. Consequently, for small « and 8 we solved
the nonlinear equations for a single mode by a
generalization of the Bogoliuboff-Kryloff® quasi-
linear solution for nonlinear equations. We showed
there is a unique stationary state and it is approached
very rapidly, The theory is nonperturbative and,
as long as a and B are small compared with one,
there are no limits placed on the amplitude of
the electromagnetic field.

When we try to extend the method for single-
mode behavior in II to the problem of multimode
behavior, a fundamental difficulty arises. As a
consequence of the coupling between the modes
produced by density variations, there is no strictly
stationary state possible for multimode behavior.
The reason for this is that the exact differential
equations have time-dependent coefficients that
depend on beat frequencies between the modes.

We find a unique steady state by dropping the
small contribution from the rapidly oscillating
terms. The solution for the steady state becomes
an eigenvalue problem where the steady-state popu-
lation inversion is the eigenvalue, and the mode
intensities are eigenvectors.

3 N. Kryloff and N. Bogoliuboff, Introduction to Nonlinear

Mechanics, (Princeton University Press, Princeton, New
Jersey, 1947).

404



MULTIMODE

Many of our results are qualitatively similar
to Lamb’s.* The differences arise because Lamb
includes center-of-mass-internal variable correla-
tions and restricts his equations to near threshold.
We on the other hand have no restriction on the
magnitude of the field but neglect center-of-mass—
internal correlations.

In Sec. IT we introduce the Hamiltonian of our
system and derive the equations of motion in the
presence of dissipation and a pump. We then
formally eliminate the matter dipole operators in
the equations of motion for the electromagnetic
field variables.

In Sec. IIT we introduce the SCFA and the
adiabatic approximation in the equations of motion
for the electromagnetic field variables. Although
our treatment of the Hamiltonian, SCFA, and
adiabatic approximation is self-contained, we refer
the reader to I and II for a more thorough treatment.

We find the stationary state in Sec. IV and we
solve the three-mode problem exactly.

We calculate the steady-state frequency shift
in See. V and show that in the absence of noise
the frequency shifts of the individual modes are
only weakly dependent on each other. In Sec. VI
we compare our results with Lamb’s theory.*

II. HAMILTONIAN AND EQUATIONS OF MOTION

Our Hamiltonian for N two-level systems inter-

acting with the electromagnetic field is
Hy =hN)+ H,. + H: + H;, (2.1)

where

h{)) N
M) =32 Xde  Hy = L ke, + 1)

H; = hw, Z Z'Vkpk(Xa){altUa + aka:}
a k
N P2 1
H.,. = Z2M+§Za: HZV(Xa_Xﬁ)

+ ; E U(Xa - ni)-

The a) and a, are the usual creation and annihilation
operators for the electromagnetic field in the kth
cavity mode. The operators for the internal degrees
of freedom of the ath atom are

' 0 1 0 o Lo (1 0y,
a"—(o 0)’ a"’~(1 0)’ Te (o —1)
We drop the nonresonant terms from H; as we
did in II. The definitions of 4, and T'\(X.) are

4+ W. E. Lamb, Phys. Rev. 134, A1429 (1964).
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T = (hwy) (A e(al €-x |DYdx/V) =
Fk(Xa) = Ek(Xa) V;:

where the E,(X ,) are the normalized eigenfunctions
of the cavity, V is the volume and (a| &-x |b) is
the matrix element of the dipole moment between
the two relevant atomic wavefunctions, ¢,(x) and
¥,(X). Since the k dependence of %, is negligible,
we replace ¥, by 4. We treat the center of mass
classically as N atoms interacting with each other
and with M pump atoms through two-body forces,
V(X.— Xp) and U(X, — ;) respectively. The X,
is the coordinate of the center of mass of the ath
two-level system and 7, is the coordinate of the
center of mass of the sth pump atom.

When we use Eq. (2.1) and the commutation
relations, we obtain the following equations of
motion for the radiation and matter operators

idy — a + 'i(ak/ Tk)

= Jwo 2 0uTu(X.), (2.22)
160 — wosa + 0a/Te)

= —Jw, 2 M. T(X,),  (2.2b)
idy + Qay + i(ar/T)

= —Fw, 2a 0aTX.), (2.2c)
i5e + woo + i(ca/T5)

= Jwo Do GdaTW(X.). (2.2d)

We have introduced the phenomenological decay
constants, T, and T, where 7T, represents the
relaxation of the off-diagonal matrix elements of
the matter density matrix and T, is the radiation
relaxation time for the matter-free cavity. The
term T, is usually written in the form (v,/2Q.)"
where @, is the @ of the kth mode.

When we rigorously eliminate the operators o,
and ¢ from Eqgs. (2.2a), (2.2b), (2.2¢), and (2.2d)
by the same method we used in 11, Sec. I1, we obtain

i)k + % = '72‘*’3 Z Z ¢ f Pk(ay t)rk'(a’ t)
k a k’ 0

X {¢a(t)bp (t)e™ T e T, (2.38)

b + %f' = Fws 2 Z e fl (e, (e, t)
k « K 0
X {&a(t)).(F)e T E 0 gy (2.3D)
where
AR) =wo — X, v =T;,
Tia, t) =

dur = U — G
nIX.(0)].

. TQt
bk = ake ]
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We note that Eq. (2.3b) is just the complex conju-
gate of Eq. (2.3a).
The equation of motion for ¢, is

i a&a/at + i(&a - &0)/Tl

= 2w, kz [Ti(XJoats — T XJour},  (24)
where we add the combined dissipation and pumping
terms. The constant 7, is the relaxation time for
the diagonal matrix elements of the density matrix
and Nd, is the population difference produced by
the pump in the absence of radiation. If we have N
permanent two-level systems, Ng, can take any
value from —N to N, depending on the pump.
However, when both levels of the two-level system
are excited states of an atom, N¢, really defines
the number of two-level systems. Consequently,
when we do not have permanent two-level systems,
we take ¢, = 1. When we eliminate a': and o,
from Eq. (2.4) with the help of Eqgs. (2.2a) and
{2.2¢), we obtain

2 (X 6. +2 T blh)
« k

biby 1
= —4 2 — - 2 (6a — &).  (2.5)
k Tk Tl I3

In the absence of dissipation, Eq. (2.5) is essenti-
ally the statement that the energy of the matter
plus radiation is conserved. Equation (2.5) is exact,
involves no approximations, and is rigorously inde-
pendent of the center-of-mass coordinates. Equations
(2.3a), (2.3b), and (2.5) are as far as we can go
with an exact solution. In the next section we intro-
duce an approximation procedure that allows us
to solve the equations.

I. SELF-CONSISTENT FIELD APPROXIMATION

We obtain the SCFA solution by taking the
trace of Eq. (2.3a) with a density matrix which
consists of a product of N one-particle density
matrices, multiplied by a product of density matrices
one for each radiation oscillator, which in turn
is multiplied by N one-particle center of mass
distribution functions. The result is

(bk) -+ (b};)/Tk = w: Zk’ e
X f‘ (Pk(i)rk*(t'»e—"’“”")

X €T AE = (i B (1) dt @.1)

where «; = ¥N¥w? and (0) represents the trace of 0
with the density matrix.
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Since the Doppler frequency is of the order of
10°-10° times larger than the collision frequency in
the He-Ne laser, the dominate contribution to
()T (1)) comes from the free-particle motion.
We showed in the Appendix of II how to caleulate
(Tw(®)T%. (")) including collision effects. For free-
particle motion we obtain

(Tu(BTw (1)
= f sin k{X — V(¢ — ¢)]sin (K X)fi(X, V) dX dV

~ § exp [—3ub(k)(t — ¢)1{C(k — k') — Ck + k"))
~ 30k — &) exp [—3wn(k)(t — ¢)], 32
where the steady-state distribution function is

filX, V) = 2rksT/m)p(X) exp [—(mV"/2ksT)]

and where the cosine transform of the density of
atoms is

Ck) = fﬂ " cos kXp(X) dX.

In deriving Eq. (3.2) we assume that the steady-
state velocity distribution is Maxwellian. The
Doppler frequency, wi(k) = E@EsT)m™, is k
dependent but, since the variation over all excited
modes is less than one part in 107°, we replace
wp(k) by wp, the value of the Doppler frequency
at the line center. We neglect C(k + k') compared
with C(k — k') because C(k + E') represents the
Fourier transform of the density variation at
distances of the order of one-half the wavelength
of light; on the other hand, C(k — k') represents
density variations over distances of the order of
the size of the laser. The value of (¢ — k') for
adjacent cavity modes is #/L where L is the length
of the cavity. The density variations on this scale
are produced by surface effects and spatial variations
in the pumping mechanism.

When Eq. (3.2) is substituted in Eq. (3.1) and
the resultant integral is made dimensionless with wp,
we obtain

(b) + (B/T: = Yeh) s Ok — ¥)
X oxp () [ exp (—77/2)

X exp (—7,7) exp [—1Ak") 7]

X (¢t — bt — D)) dr, (3.3)
where 8 = w;/wp, 2 = vy/wp, and A(k") = A(K')/wp.
In general, a frequency with a bar over it represents

the dimensionless ratio of the frequency to the
Doppler frequency.
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In a gas laser 8 is much less than one, thus (b.)
and (¢) are slowly varying. Consequently, to lowest
order in 8 and for times { > wp!, we can simplify
Eq. (3.3) in the following manner:

by + (B)/Te = w18 X4 Clk — k)

X exp (idy ) (be- (OXSONF(K),  (3.4)

where

Fa =35 [ e (=3
X exp (—ryr) exp [—iA(K)r] dr

= F (k') + iF.(k) E% A exp (—7°/2)

X cos [A(k’)7] exp (—P.7) dr
+i3 f: exp (—1%/2)

X sin (A(k") 7] exp (—7.7) dr.

If we have only a single mode, d,, = 0, C(0) = 1,
and Eq. (3.4) reduces to Eq. (4.1a) of II. In II
we showed there is a unique stationary state for a
single mode and the effect of the nonlinearity is
to cause the system to approach this stationary
state rapidly. However, when we have more than
one mode present, dy is not zero and a strictly
stationary state is impossible. From Eq. (3.4) we
see that the adiabaticity parameter that measures
the slow variation of the amplitudes in the multi-
mode case is not 8 but 8 |C| where |C] is the magni-
tude of C(k — k’). We expect |C] to be usually less
than one; however, this is not necessarily true. If |C|
is so large that 8 |C| is greater than one, then the
amplitudes would not be slowly varying and we
would expect complicated multimode relaxation
oscillations. Consequently, for Eq. (3.4) to hold we
require |C] << 87*. This condition is almost certainly
satisfied.

When we replace the complex c-numbers, (b,)
and (b)), by fie~*** and f.e** in Eq. (3.4), we obtain

fl: + (fi/Ty) = (wB/2) Zk’ {exp (Dw )F(K")

+ exp (—iDw OF*(K)}C(k — K)fi ()(¢(1)), (3.5a)
ifibe = 3B Di {exp (D OF ()
— exp (=D OF*(K)}C(k — K. (D(6(D)), (3.5b)

where
Dklc’ = dkk’ + [¢k(t) - ¢k'(t)]/t-

In Sec. V, we show for ¢ > wp' that ¢,(t) = w,(k)t,
where w,(k) is the frequency shift in the steady
state. Consequently, for ¢ > wp' we have
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D, = du + w,(k) — w,(k")
= [ + w(k)] — [ + wi(k)].

Thus D,;. is just the actual frequency difference
between mode k and %’. In gas lasers the fractional
frequency shift is of the order of 107 or less so
the difference between D,,. and du- is actually
very small,

We conclude this section with a discussion of
the multimode problem when there is no coupling
between modes; that is, C(k — k') vanishes for
k # Ik'. In the absence of coupling we obtain for
each k

fo + (/T = wBEOROF(K),  (3.62)
b = BB, (3.60)
ol +2 5o p)
_b— () 4 1, :
== N > ™ fo. (3.6c)

We solved the above equations rigorously in II for
the case of a single mode. The multimode steady
state raises some difficulties. To see this, let us
assume that we have m modes and we try to find
the steady state in Eq. (3.6a) by setting f, = 0.
We then obtain the following m conditions (one
for each k) on the steady-state fractional population
difference, (¢),,

(5’>- = l/wLBFc(k)Tk- (3-7)

Since it is impossible to simultaneously satisfy
these m conditions, there is no stationary state
with more than one f, which is nonzero. We can
have m different stationary states with only one
mode at a time excited. We obtain these solutions
in the following manner. For each k we take (¢),
determined by Eq. (3.7), determine the corre-
sponding f, and ¢, in Eqgs. (3.6a) and (3.6b), and
set all ;. for k¥’ 5% k equal to zero. In other words,
due to the homogeneity of Eq. (3.6a) the only
steady-state solutions that exist for uncoupled modes
are single-mode solutions with all other modes
unexcited.

As the mode is chosen further and further away
from the atomic frequency, w,, the corresponding
{¢), will require a larger and larger pump power
due to the exponential decrease of F (k) until
finally [{¢),| becomes equal to one and it becomes
impossible to excite the mode. Consequently, only
the modes near the line center have low enough
thresholds to satisfy the steady-state conditions,
Eq. 3.7).
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The above situation is reasonable because taking
Ck — k') = 0 for k # k' corresponds, in effect,
to a uniform spatial population inversion. Thus
the conditions for stationarity put competing de-
mands on {(¢) such that no single constant value
{¢), can satisfly them all. The only strictly time-
independent answer is for one mode alone to oscillate.
When C(k — k') # 0, we can have a time-inde-
pendent stationary state (¢), because the population
inversion is spatially inhomogeneous and, in effect,
different modes can sample different spatial Fourier-
transform components of the population inversion.
We show this in the next section.

Sinece Eqgs. (3.6) are nonlinear, we cannot take
linear combinations of the single-mode stationary
states and get solutions. However, there may be
time-dependent solutions of Eqgs. (3.6) which look
like time-dependent linear combinations of station-
ary states. This would mean that energy would oc-
casionally flow from one mode to another mode
through (4(¢)) which couples the modes. This time-
dependent flow of energy is what prevents {¢(t) ) from
approaching {(¢), when C(k — k') = O for k == k.
We observe in the absence of spatial inhomogeneities
that the kth modes sees the k'th mode not directly,
but through ¢(f) in the exact equations of motion,
Egs. (2.3a) and (2.3b). Thus, the family of solutions
for C(k — k") = 0 for k s k' represented by Eq.
(3.7) is not some accidental property of an approxi-
mation scheme but is a property of the exact
equations of motion.

IV. STEADY-STATE SOLUTIONS

We can find the steady-state amplitudes (f).,
by setting f. equal to zero in Eq. (3.5a) and solving
the resulting equations for the (f),. In order to
obtain a time-independent solution we drop the
rapidly oscillating terms, exp [2¢D;.,..t]. The Dy.;..
are multiples of the cavity spacing and are of the
order of 10° or greater and they make negligible
contribution to the steady state.

The procedure outlined above leads to equations
for (f.)s which are linear and homogeneous in (f;),
and the condition for the existence of a solution
takes the form of an equation for (¢),. Thus the
procedure is solved for (¢),, obtain the ratio of the
amplitudes, and finally use the steady-state solution
of Eq. (3.6¢)

ooy + 40 40 _

to obtain the absolute values of the (fi)..
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We obtain exactly the same equations by a more
direct method which has the advantage that the
qualitative features of the equations are discernible
without explicit solution. We set f; equal to zero
in Eq. (3.5a), square the resulting equations, neglect
the rapidly oscillating terms and obtain

(f:)a/lec - (f:).,(&)iwfﬁzlf’f
= 5 (en PGP O — ), (@)

where a subscript s means steady state.
With a simple change of variables, Eq. (4.1)
takes the following suggestive form:

D\ - Ak]xk = Z Ay i

k ek

where
T, = (fz)s)

Akk’ =

A, = w28’ TIFK),
1028°T2C(k — K') [P

A= ()"

We can now state the problem of the stationary
state very simply as an eigenvalue problem. The
eigenvalues A give the allowed values of (¢), and
the components of the eigenvectors give the ratio
of the mode amplitudes in the steady state. The
magnitude of the eigenvectors is obtained from
the steady-state solution of Eq. (3.6¢). The steady-
state conditions do not give the frequency shifts.
In Sec. V we find the steady-state frequency shifts.

Since A; and A, decrease exponentially as the
mode frequency 2, gets further away from the
atomic frequency w,, the number of modes % in
the system is equal to the number of modes contained
in one to two Doppler widths. This number is
usually under ten. For algebraic convenience we
take T, = T, independent of ¥ and we assume
one mode to have the same frequency as the atomic
frequency. Even with these simplifications the
algebra is formidable but the general features of
the solution are qualitatively discernible.

As a specific example, let us consider the case
where only five modes are important. The eigenvalue
determinate is

(A-.—N a2 0 0 0
a2  (Ad_,—=N)  a(D) 0 0
0 a(l) (Ao—N) a(l) 0 )
0 0 a(l) (4,—2)  a®
0 0 0 a2) (4.—N)

4.3)
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where

A; = Ay Ao = wiBTIFH0) = 4@ = ),
A; = @i TF(iD); D = (Qs — Q)/on,
a(f) = 3wiB°T;C’(xr/L) [F(GD)[".

The length of the cavity is L. In writing the determi-
nate we assume that only the first cosine transform
of the density is important. It is possible that the
density variations at £ — k' = 2«x/L are also
important. In that case the determinate would
contain terms proportional to C*(2x/L) which
would appear on subdiagonals parallel to the sub-
diagonals containing the a(j)’s.

We can now see some of the qualitative features
of the solution. Starting from A, and proceeding
along the diagonal in either direction, we find the
A/s decrease rapidly. The same property holds
along the parallels to the diagonal. Thus, the modes
near the line center are tightly coupled to each
other while the modes in the wings of the line are
weakly coupled to each other.

Fortunately, we do not have to find all the
eigenfunctions and all the eigenvalues of a nine- or
ten-dimensional matrix to find the steady state.
Since the magnitude of (¢) must be less than or
equal to one, then the only physically realizable
eigenvalues are A > 1. Second, the z;’s have to be
positive so only eigenvectors with all positive
coefficients are physically realizable. In practically
all cases the combination of conditions will lead
to only a single physical realizable eigenvalue
(population inversion) and a single realizable eigen-
vector. As an example, the matrix in Eq. (4.3) is
Hermitian so its eigenvectors are orthogonal. Thus,
if there is an eigenvector which is a linear combi-
nation of all the z,’s with positive coefficients, it
is unique. It is easy to show there is such an eigen-
vector.
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We work out the problem of three modes because
this is the only case that can be solved without
any approximations. However, the three-dimensional
problem is rich enough to include weak and strong
coupling limits which we need in order to understand
the qualitative features of the general solution.
The matrix for the three-mode problem is

(4.—%N  aQ®) 0
a(l)  (Ado—N  a(D)
0 al)  (4,—»
The eigenvalues are
A= A, N\, A
where
e = 3A; + Ap) = (4, — A4) + 8]

Only the eigenvalue \, is greater than one and has
all components of its eigenvector positive. This is
a specific example of the uniqueness of the stationary
state we discussed earlier.

The stationary value of (¢), is

<5'>s = {%(Al + Ao)
+ (4o — 4)* + 8’1}
The steady-state intensity ratios are

2, J(A: — 4, + [(4, — 4, + 8’ (D]
-4 )

(44

a(l)
(4.5)
Xy = 2.
The steady-state solution of Eq. (3.6¢) is
() + @/NYTT) 2o fr = 1. (46)

We obtain the steady-state value of z, when we
substitute Eqs. (4.4) and (4.5) in Eq. (4.6):

1 — (34, + Ao + 3(4o — A)* + 8a’(D]H

%o = @T,/Na()T,)al) + 3(4, — Ao + {[(4:, — 40 + 8’1}

The general solution, Eqs. (4.4), (4.5), and (4.7),
for the steady-state amplitudes is complicated and
not very illuminating. There are, however, two
limits which indicate the range of behavior of the
solution.

The first limit is weak coupling which we define
by the inequality 2v2 |a(1)] < |4, — A4.|. In this
limit the steady-state population inversion per
molecule is

NP _Lre o
O~ CErF© ' T ar T

The first term in brackets is the steady-state
population inversion we obtained in II for a single
mode, The weak coupling limit implies |C] <« D;
thus, the steady-state population inversion is only
slightly different from the single-mode result. In
the weak coupling limit the ratio of the intensity
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in the off-resonant models to the intensity in the
resonant mode is (x,/7,) = (C*/8D%). Thus, almost
all the energy is in the tuned mode. Consequently,
the weak coupling limit corresponds to the physical
situation, where the tuned mode behaves almost
independently of the weakly excited adjacent modes.
However, the coupling, although weak, makes
possible the existence of a unique stationary state.

In the opposite limit of strong coupling where
2v2 la(1)] > |4, — A,|, which implies [C]* > D7,
we have

Ty = Ty, Xy = %‘/éxcﬁ
()e = [wrBT.F.(0)(1 + $v2CHI™.

In this limit the modes adjacent to the center mode
are excited to a large fraction, v2/2, of the center
mode’s intensity.

With the insight gained from the three-mode
case let us look again at the general problem. First,
we see that, for modes far from the center of the
Doppler line, the modes are weakly coupled to
adjacent modes and are weakly excited. Near the
center of the line we need to know the value of
C(x/L), the cosine transform of the density of atoms
for the wavenumber x/L. As yet we do not have
sufficient information to evaluate C(x/L) which
depends on surface effects and detailed spatial
variations of the pump excitation method, This
spatial variation is probably a function of the
intensity of the pump in gas lasers. The modes
near the atomic frequency w, are more than weakly
coupled but probably not strongly coupled to each
other. The values of C(x/L) are probably in an
intermediate range with properties closer to strong
coupling than weak coupling; ie., the adjacent
modes are excited to an appreciable fraction of the
intensity of the center of the line.

V. CALCULATION OF THE FREQUENCY SHIFT

The condition that we have a stationary state
requires that ¢, approaches a constant as ¢ ap-
proaches infinity. We now solve Eq. (3.5) for ¢,
and show that for long times ¢.(f) approaches
w,(k)t where w,(k) is the steady-state frequency
shift of the kth mode. We rewrite Eq. (3.5b) for
t > wp! in the following form:

$u(t) = wrBS(t)F (k)

L)

+ C"Lﬁ k; C(k - k’) fk(t)

(¢(8)) sin [Dyert + x(R")],
5.1)
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where
F(k') = |F(&)| exp [—ix(k")].

When we integrate ¢ over a time long compared
with the time required for the amplitudes to reach
their stationary values, we obtain

o) = @)t = wif T @000 — 1) 1P )

{sin x(K')t sin Dyt
X D
kk’

cos x(K")[1 — cos Dy;.f]
Dy

+ } , (5.2)

where
w,(k) = C"L18<6->3F:(k)-

The frequency shift w,(k) has the same functional
form as the frequency shift we calculated for a
single mode in II. However, the steady-state popu-
lation difference per molecule, (#),, is now different
from the single-mode solution because it is the
eigenvalue of Eq. (4.2) which is a functional of all
the modes through the mode coupling. In the weak
coupling limit, {¢), approaches the single-mode
result, [w, BT, F.(k)]™", and w,(k) then approaches
the single-mode frequency shift, F,(k)[T.F. (k)] .

The right-hand side of Eq. (5.2) consists of
rapidly oscillating terms that make negligible contri-
butions to the phase in times ¢ > Dt ~ 107°
seconds. For all coupling strengths we can write
¢:.(¢) in the following form:

&) = t{w,,(k) + X [ﬂ_@%&yﬁ
k' #k b

Nu (1 — cos Dkk,t)]} N
Dot , (5.3)

+

where [Mu|, [Nuw| < Jw.(®)]. For ¢ > Dy the
contribution from the summation over k&’ vanishes
and we are left with the result that for all coupling
strengths ¢,() =~ w, k).

In the presence of noise there is & small noise
induced frequency shift and {¢;(f) — ¢;(0)}a is
proportional to { where the average is over the
noise ensemble. It is necessary to consider times
t >> D} to obtain a result proportional to ¢ for the
mean-square fluctuation of the phase. Consequently,
as we will show in a future publication the sum
over k' of the rapidly oscillating terms in Eq. {5.3)
makes no contribution to the stochastic wandering
of the phase in the presence of noise.
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The frequency difference between two modes is
D’Gk' (Qk + w,(k)) - (Qk’ + wa(k,))
=@ — QU + w0 fé)(F.(k) — F.(K)}.

The only indication in the frequency shift that we
have coupled modes is the fact that (¢), depends
in detail on the number of modes and the magnitude
of their coupling. Consequently, the derivation
of the frequency shift to second order in 8 derived
in IT applies to the multimode problem as well,
and we have

D = & — Y + @) {F(K)1 — B6).F (k)]
— F (O — o) F()l},  (54)

I

where

o

P =5 [ e (-3

X exp (—7,7) cos [A(k)7] dr.

If we had N permanent two-level systems the
frequency difference D,,. between two modes k
and &’ would be strictly independent of the magni-
tude of the pump; and depend only on the spatial
density of the two-level systems. In a gas laser
we do not have permanent two-level systems but
they are created by the pump. Consequently,
C(k — k') probably depends on the pump power
and thus, D,;. in Eq. (5.4) can have a dependence
on pump power because (¢), depends on all the
Clk — k')s.

VI. COMPARISON OF SCFA WITH
LAMB'S THEORY

In this paper we have used the SCFA which
means that we have neglected all correlations
including those between internal variables ¢, and
the center-of-mass variables X,, V., which are
induced by the pump. By ignoring these correlations
we are able to allow large exchanges of energy
between matter and radiation and as a result we
found the electromagnetic field in the steady state
is proportional to the population inversion N and
thus the field increases proportional to pump power.
Lamb on the other hand uses perturbation theory
and thus he is restricted to near threshold, [1 —
(N,/N)] < 1 where N, is the threshold population
inversion. However he includes correlations between
the internal variables ¢, and the center-of-mass
variables induced by the pump. Thus the funda-
mental difference between Lamb and the SCFA
consists in different treatments of the pump. Many
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properties of both solutions are similar, the threshold
population inversion density are identical, the first-
order frequency shifts are identical and both have
Lamb dips. For a more complete analysis see Ref. 5.

In the multimode problem there is a fundamental
difference. In Lamb’s theory the dominate inter-
action between the modes comes from Doppler
motion which introduces the frequencies w, = k-V,.
The frequencies w, in effect couple the modes so
that even if the population inversion is perfectly
uniform there is mode coupling. Lamb has some
purely spatial effects which are proportional to
C(2r/L) and C{4x/L). However these terms are
small and are not the same as the spatial dependent
coupling of the SCFA which is proportional to
C*(x/L). In the SCFA there is no mode coupling
for the purely spatial homogeneous case. In fact
the total coupling is produced not by the Doppler
motion, w, = k-V,, but by spatial density vari-
ations with wavenumbers of the order of magnitude
(nw/L) where nis 1 or 2.

Both the Doppler motion coupling and the
spatial density variation coupling are probably
present at the same time. Thus a very useful experi-
ment would be one in which the density of excited
atoms is varied over spatial distances of the order
of L, the size of the container. Also since the effect
of pump-induced -correlations should be less im-
portant at high pump power the mode coupling
will probably vary as a function of N, i.e., the
pump power.

VII. DISCUSSION

We have shown that a multimode gas laser
does not have a strictly stationary state because
of coupling between the modes. However, we found
a unique time averaged stationary state which is
a solution of an eigenvalue problem. The eigenvalues
are the steady-state population inversion per mole-
cule; i.e., the population inversion threshold. The
components of the eigenvectors give the steady-
state mode intensity ratios. As we increase the
pump above threshold, (4), stays at its steady-
state value and the additional energy goes into
electromagnetic energy in the modes. The com-
ponents of the steady-state eigenstate determine
how the energy is distributed among the modes.

The steady-state frequency shifts of the modes
are practically independent of each other. They
are coupled indirectly to each other in that they
all see the same population inversion, {¢),, which is
a funection of the coupling between modes, C(k — %’).

5 C. R. Willis, “Models of Gas Lasers” (unpublished).
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In II we were able to show the unique stationary
state for a single mode is approached rapidly by
using an extension of the Bogoliuboffi-Kryloff quasi-
linear theory for nonlinear equations. In the multi-
mode case the approach to the steady state is
complicated because there is no strictly stationary
state and we now have systems of nonlinear
equations. We cannot make a careful analysis of
the approach to our time averaged steady state

R. WILLIS

without a simultaneous study of the noise problem.
We hope to do this in a future publication. Fortu-
nately, the steady-state amplitudes and frequency
shifts do not depend on the approach to the sta-
tionary state.
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